Solve : If a, b, c, d are in H.P. , then prove that ab + bc + cd = 3ad












0












$begingroup$


My try : Since a, b, c, d are in HP, 1/a, 1/b, 1/c and 1/d are in AP.



If the common difference of AP is k, then 1/d = 1/a + 3k



==> k = (1/3)(1/d - 1/a) = (1/3){(a - d)/ad} = (a-d)/3ad



and 1/c = 1/a + 2k = 1/a + 2(a-d)/3ad = [3d + 2a - 2d]/3ad = (2a + d)/3ad
==> c = 3ad/(2a + d)



Further, a, b, c are in HP, ==> b = 2ac/(a+c)
So, ab + bc = b(a+c) = 2ac/(a+c) = 2ac



ab + bc + cd = 2ac + cd = c(2a+d)



Substituting for c from step (ii) above,
ab + bc + cd = {3ad/(2a+d)}*(2a+d) = 3ad [Proved]
I think that this process is quite long , is there any another approach of this question.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    Sep 9 '18 at 7:24
















0












$begingroup$


My try : Since a, b, c, d are in HP, 1/a, 1/b, 1/c and 1/d are in AP.



If the common difference of AP is k, then 1/d = 1/a + 3k



==> k = (1/3)(1/d - 1/a) = (1/3){(a - d)/ad} = (a-d)/3ad



and 1/c = 1/a + 2k = 1/a + 2(a-d)/3ad = [3d + 2a - 2d]/3ad = (2a + d)/3ad
==> c = 3ad/(2a + d)



Further, a, b, c are in HP, ==> b = 2ac/(a+c)
So, ab + bc = b(a+c) = 2ac/(a+c) = 2ac



ab + bc + cd = 2ac + cd = c(2a+d)



Substituting for c from step (ii) above,
ab + bc + cd = {3ad/(2a+d)}*(2a+d) = 3ad [Proved]
I think that this process is quite long , is there any another approach of this question.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    Sep 9 '18 at 7:24














0












0








0





$begingroup$


My try : Since a, b, c, d are in HP, 1/a, 1/b, 1/c and 1/d are in AP.



If the common difference of AP is k, then 1/d = 1/a + 3k



==> k = (1/3)(1/d - 1/a) = (1/3){(a - d)/ad} = (a-d)/3ad



and 1/c = 1/a + 2k = 1/a + 2(a-d)/3ad = [3d + 2a - 2d]/3ad = (2a + d)/3ad
==> c = 3ad/(2a + d)



Further, a, b, c are in HP, ==> b = 2ac/(a+c)
So, ab + bc = b(a+c) = 2ac/(a+c) = 2ac



ab + bc + cd = 2ac + cd = c(2a+d)



Substituting for c from step (ii) above,
ab + bc + cd = {3ad/(2a+d)}*(2a+d) = 3ad [Proved]
I think that this process is quite long , is there any another approach of this question.










share|cite|improve this question









$endgroup$




My try : Since a, b, c, d are in HP, 1/a, 1/b, 1/c and 1/d are in AP.



If the common difference of AP is k, then 1/d = 1/a + 3k



==> k = (1/3)(1/d - 1/a) = (1/3){(a - d)/ad} = (a-d)/3ad



and 1/c = 1/a + 2k = 1/a + 2(a-d)/3ad = [3d + 2a - 2d]/3ad = (2a + d)/3ad
==> c = 3ad/(2a + d)



Further, a, b, c are in HP, ==> b = 2ac/(a+c)
So, ab + bc = b(a+c) = 2ac/(a+c) = 2ac



ab + bc + cd = 2ac + cd = c(2a+d)



Substituting for c from step (ii) above,
ab + bc + cd = {3ad/(2a+d)}*(2a+d) = 3ad [Proved]
I think that this process is quite long , is there any another approach of this question.







sequences-and-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Sep 9 '18 at 4:01









user580093user580093

11316




11316












  • $begingroup$
    Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    Sep 9 '18 at 7:24


















  • $begingroup$
    Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    Sep 9 '18 at 7:24
















$begingroup$
Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Sep 9 '18 at 7:24




$begingroup$
Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Sep 9 '18 at 7:24










3 Answers
3






active

oldest

votes


















1












$begingroup$

Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.



begin{align}
(c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
(cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
(cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
(abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
ab+bc+cd&=3ad \
end{align}






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
    $endgroup$
    – Anurag A
    Sep 9 '18 at 4:39



















0












$begingroup$

To organize your method:
$$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.



Equating $(1,3),(2,3),(1,2)$ we get:
$$ab=3ad-2bd\
bc=2ac-ab\
cd=3ad-2ac\
ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
=3ad+(3ad-2bd)-ab=3ad.$$
Alternative method:
$$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
$$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
because:
$$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    This is no quicker, but for what it’s worth:



    If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$



    Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.



    From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$



    Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$






    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910388%2fsolve-if-a-b-c-d-are-in-h-p-then-prove-that-ab-bc-cd-3ad%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.



      begin{align}
      (c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
      (cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
      (cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
      (abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
      ab+bc+cd&=3ad \
      end{align}






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
        $endgroup$
        – Anurag A
        Sep 9 '18 at 4:39
















      1












      $begingroup$

      Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.



      begin{align}
      (c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
      (cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
      (cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
      (abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
      ab+bc+cd&=3ad \
      end{align}






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
        $endgroup$
        – Anurag A
        Sep 9 '18 at 4:39














      1












      1








      1





      $begingroup$

      Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.



      begin{align}
      (c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
      (cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
      (cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
      (abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
      ab+bc+cd&=3ad \
      end{align}






      share|cite|improve this answer









      $endgroup$



      Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.



      begin{align}
      (c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
      (cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
      (cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
      (abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
      ab+bc+cd&=3ad \
      end{align}







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Sep 9 '18 at 4:30









      YutaYuta

      62929




      62929












      • $begingroup$
        Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
        $endgroup$
        – Anurag A
        Sep 9 '18 at 4:39


















      • $begingroup$
        Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
        $endgroup$
        – Anurag A
        Sep 9 '18 at 4:39
















      $begingroup$
      Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
      $endgroup$
      – Anurag A
      Sep 9 '18 at 4:39




      $begingroup$
      Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
      $endgroup$
      – Anurag A
      Sep 9 '18 at 4:39











      0












      $begingroup$

      To organize your method:
      $$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
      where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.



      Equating $(1,3),(2,3),(1,2)$ we get:
      $$ab=3ad-2bd\
      bc=2ac-ab\
      cd=3ad-2ac\
      ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
      =3ad+(3ad-2bd)-ab=3ad.$$
      Alternative method:
      $$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
      where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
      $$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
      ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
      because:
      $$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$






      share|cite|improve this answer









      $endgroup$


















        0












        $begingroup$

        To organize your method:
        $$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
        where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.



        Equating $(1,3),(2,3),(1,2)$ we get:
        $$ab=3ad-2bd\
        bc=2ac-ab\
        cd=3ad-2ac\
        ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
        =3ad+(3ad-2bd)-ab=3ad.$$
        Alternative method:
        $$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
        where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
        $$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
        ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
        because:
        $$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$






        share|cite|improve this answer









        $endgroup$
















          0












          0








          0





          $begingroup$

          To organize your method:
          $$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
          where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.



          Equating $(1,3),(2,3),(1,2)$ we get:
          $$ab=3ad-2bd\
          bc=2ac-ab\
          cd=3ad-2ac\
          ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
          =3ad+(3ad-2bd)-ab=3ad.$$
          Alternative method:
          $$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
          where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
          $$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
          ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
          because:
          $$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$






          share|cite|improve this answer









          $endgroup$



          To organize your method:
          $$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
          where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.



          Equating $(1,3),(2,3),(1,2)$ we get:
          $$ab=3ad-2bd\
          bc=2ac-ab\
          cd=3ad-2ac\
          ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
          =3ad+(3ad-2bd)-ab=3ad.$$
          Alternative method:
          $$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
          where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
          $$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
          ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
          because:
          $$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Sep 9 '18 at 6:54









          farruhotafarruhota

          21.8k2842




          21.8k2842























              0












              $begingroup$

              This is no quicker, but for what it’s worth:



              If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$



              Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.



              From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$



              Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                This is no quicker, but for what it’s worth:



                If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$



                Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.



                From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$



                Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  This is no quicker, but for what it’s worth:



                  If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$



                  Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.



                  From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$



                  Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$






                  share|cite|improve this answer











                  $endgroup$



                  This is no quicker, but for what it’s worth:



                  If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$



                  Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.



                  From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$



                  Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 29 at 7:23









                  user69284

                  17918




                  17918










                  answered Sep 9 '18 at 19:23









                  Steve KassSteve Kass

                  11.4k11530




                  11.4k11530






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910388%2fsolve-if-a-b-c-d-are-in-h-p-then-prove-that-ab-bc-cd-3ad%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith