Solve : If a, b, c, d are in H.P. , then prove that ab + bc + cd = 3ad
$begingroup$
My try : Since a, b, c, d are in HP, 1/a, 1/b, 1/c and 1/d are in AP.
If the common difference of AP is k, then 1/d = 1/a + 3k
==> k = (1/3)(1/d - 1/a) = (1/3){(a - d)/ad} = (a-d)/3ad
and 1/c = 1/a + 2k = 1/a + 2(a-d)/3ad = [3d + 2a - 2d]/3ad = (2a + d)/3ad
==> c = 3ad/(2a + d)
Further, a, b, c are in HP, ==> b = 2ac/(a+c)
So, ab + bc = b(a+c) = 2ac/(a+c) = 2ac
ab + bc + cd = 2ac + cd = c(2a+d)
Substituting for c from step (ii) above,
ab + bc + cd = {3ad/(2a+d)}*(2a+d) = 3ad [Proved]
I think that this process is quite long , is there any another approach of this question.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
My try : Since a, b, c, d are in HP, 1/a, 1/b, 1/c and 1/d are in AP.
If the common difference of AP is k, then 1/d = 1/a + 3k
==> k = (1/3)(1/d - 1/a) = (1/3){(a - d)/ad} = (a-d)/3ad
and 1/c = 1/a + 2k = 1/a + 2(a-d)/3ad = [3d + 2a - 2d]/3ad = (2a + d)/3ad
==> c = 3ad/(2a + d)
Further, a, b, c are in HP, ==> b = 2ac/(a+c)
So, ab + bc = b(a+c) = 2ac/(a+c) = 2ac
ab + bc + cd = 2ac + cd = c(2a+d)
Substituting for c from step (ii) above,
ab + bc + cd = {3ad/(2a+d)}*(2a+d) = 3ad [Proved]
I think that this process is quite long , is there any another approach of this question.
sequences-and-series
$endgroup$
$begingroup$
Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Sep 9 '18 at 7:24
add a comment |
$begingroup$
My try : Since a, b, c, d are in HP, 1/a, 1/b, 1/c and 1/d are in AP.
If the common difference of AP is k, then 1/d = 1/a + 3k
==> k = (1/3)(1/d - 1/a) = (1/3){(a - d)/ad} = (a-d)/3ad
and 1/c = 1/a + 2k = 1/a + 2(a-d)/3ad = [3d + 2a - 2d]/3ad = (2a + d)/3ad
==> c = 3ad/(2a + d)
Further, a, b, c are in HP, ==> b = 2ac/(a+c)
So, ab + bc = b(a+c) = 2ac/(a+c) = 2ac
ab + bc + cd = 2ac + cd = c(2a+d)
Substituting for c from step (ii) above,
ab + bc + cd = {3ad/(2a+d)}*(2a+d) = 3ad [Proved]
I think that this process is quite long , is there any another approach of this question.
sequences-and-series
$endgroup$
My try : Since a, b, c, d are in HP, 1/a, 1/b, 1/c and 1/d are in AP.
If the common difference of AP is k, then 1/d = 1/a + 3k
==> k = (1/3)(1/d - 1/a) = (1/3){(a - d)/ad} = (a-d)/3ad
and 1/c = 1/a + 2k = 1/a + 2(a-d)/3ad = [3d + 2a - 2d]/3ad = (2a + d)/3ad
==> c = 3ad/(2a + d)
Further, a, b, c are in HP, ==> b = 2ac/(a+c)
So, ab + bc = b(a+c) = 2ac/(a+c) = 2ac
ab + bc + cd = 2ac + cd = c(2a+d)
Substituting for c from step (ii) above,
ab + bc + cd = {3ad/(2a+d)}*(2a+d) = 3ad [Proved]
I think that this process is quite long , is there any another approach of this question.
sequences-and-series
sequences-and-series
asked Sep 9 '18 at 4:01
user580093user580093
11316
11316
$begingroup$
Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Sep 9 '18 at 7:24
add a comment |
$begingroup$
Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Sep 9 '18 at 7:24
$begingroup$
Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Sep 9 '18 at 7:24
$begingroup$
Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Sep 9 '18 at 7:24
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.
begin{align}
(c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
(cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
(cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
(abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
ab+bc+cd&=3ad \
end{align}
$endgroup$
$begingroup$
Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
$endgroup$
– Anurag A
Sep 9 '18 at 4:39
add a comment |
$begingroup$
To organize your method:
$$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.
Equating $(1,3),(2,3),(1,2)$ we get:
$$ab=3ad-2bd\
bc=2ac-ab\
cd=3ad-2ac\
ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
=3ad+(3ad-2bd)-ab=3ad.$$
Alternative method:
$$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
$$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
because:
$$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$
$endgroup$
add a comment |
$begingroup$
This is no quicker, but for what it’s worth:
If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$
Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.
From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$
Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910388%2fsolve-if-a-b-c-d-are-in-h-p-then-prove-that-ab-bc-cd-3ad%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.
begin{align}
(c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
(cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
(cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
(abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
ab+bc+cd&=3ad \
end{align}
$endgroup$
$begingroup$
Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
$endgroup$
– Anurag A
Sep 9 '18 at 4:39
add a comment |
$begingroup$
Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.
begin{align}
(c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
(cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
(cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
(abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
ab+bc+cd&=3ad \
end{align}
$endgroup$
$begingroup$
Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
$endgroup$
– Anurag A
Sep 9 '18 at 4:39
add a comment |
$begingroup$
Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.
begin{align}
(c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
(cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
(cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
(abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
ab+bc+cd&=3ad \
end{align}
$endgroup$
Since $a$, $b$, $c$, $d$ are in HP, $c^{-1}+a^{-1}=2b^{-1}$ and $d^{-1}-b^{-1}=c^{-1}-a^{-1}$.
begin{align}
(c^{-1}+a^{-1})(d^{-1}-b^{-1})&=2b^{-1}(c^{-1}-a^{-1}) \
(cd)^{-1}+(ad)^{-1}-(ab)^{-1}-(bc)^{-1}&=2(bc)^{-1}-2(ab)^{-1} \
(cd)^{-1}+(ad)^{-1}+(ab)^{-1}&=3(bc)^{-1} \
(abcd)[(cd)^{-1}+(ad)^{-1}+(ab)^{-1}]&=(abcd)[3(bc)^{-1}] \
ab+bc+cd&=3ad \
end{align}
answered Sep 9 '18 at 4:30
YutaYuta
62929
62929
$begingroup$
Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
$endgroup$
– Anurag A
Sep 9 '18 at 4:39
add a comment |
$begingroup$
Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
$endgroup$
– Anurag A
Sep 9 '18 at 4:39
$begingroup$
Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
$endgroup$
– Anurag A
Sep 9 '18 at 4:39
$begingroup$
Your solution is very similar to what OP has done. I think OP wants an alternate method which is shorter.
$endgroup$
– Anurag A
Sep 9 '18 at 4:39
add a comment |
$begingroup$
To organize your method:
$$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.
Equating $(1,3),(2,3),(1,2)$ we get:
$$ab=3ad-2bd\
bc=2ac-ab\
cd=3ad-2ac\
ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
=3ad+(3ad-2bd)-ab=3ad.$$
Alternative method:
$$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
$$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
because:
$$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$
$endgroup$
add a comment |
$begingroup$
To organize your method:
$$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.
Equating $(1,3),(2,3),(1,2)$ we get:
$$ab=3ad-2bd\
bc=2ac-ab\
cd=3ad-2ac\
ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
=3ad+(3ad-2bd)-ab=3ad.$$
Alternative method:
$$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
$$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
because:
$$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$
$endgroup$
add a comment |
$begingroup$
To organize your method:
$$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.
Equating $(1,3),(2,3),(1,2)$ we get:
$$ab=3ad-2bd\
bc=2ac-ab\
cd=3ad-2ac\
ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
=3ad+(3ad-2bd)-ab=3ad.$$
Alternative method:
$$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
$$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
because:
$$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$
$endgroup$
To organize your method:
$$k=frac13left(frac1d-frac1aright)=frac12left(frac1c-frac1aright)=frac1b-frac1a,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$.
Equating $(1,3),(2,3),(1,2)$ we get:
$$ab=3ad-2bd\
bc=2ac-ab\
cd=3ad-2ac\
ab+bc+cd=3ad-2bd+2ac-ab+3ad-2ac=\
=3ad+(3ad-2bd)-ab=3ad.$$
Alternative method:
$$k=frac1b-frac1a=frac1c-frac1b=frac1d-frac1c,$$
where $k$ is the common difference of the AP: $frac1a,frac1b,frac1c,frac1d$. It results in:
$$ab=frac{a-b}{k}; bc=frac{b-c}{k}; cd=frac{c-d}{k};\
ab+bc+cd=frac{a-b+b-c+c-d}{k}=frac{a-d}{k}=3ad,$$
because:
$$frac{a-d}{k}=3ad iff k=frac13left(frac1d-frac1aright).$$
answered Sep 9 '18 at 6:54


farruhotafarruhota
21.8k2842
21.8k2842
add a comment |
add a comment |
$begingroup$
This is no quicker, but for what it’s worth:
If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$
Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.
From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$
Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$
$endgroup$
add a comment |
$begingroup$
This is no quicker, but for what it’s worth:
If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$
Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.
From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$
Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$
$endgroup$
add a comment |
$begingroup$
This is no quicker, but for what it’s worth:
If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$
Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.
From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$
Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$
$endgroup$
This is no quicker, but for what it’s worth:
If $a,b,c,d$ are in harmonic progression, then $frac1a,frac1b,frac1c, frac1d$ are in arithmetic progression, so $frac1a+frac1d=frac1b+frac1c$, or (just adding the fractions) $$displaystyle frac{a+d}{color{red}{ad}}=frac{b+c}{bc}.$$
Also, $frac1a+frac1c=frac2b$ and $frac1b+frac1d=frac2c$, or $frac{a+c}{ac}=frac2b$ and $frac{b+d}{bd}=frac2c$, from which $$displaystylefrac{2a+2c}{color{green}{abc}}=frac4{b^2}mbox{ and }displaystylefrac{2b+2d}{color{blue}{bcd}}=frac4{c^2}$$.
From this, $displaystyle color{red}{ad}=frac{(a+d)bc}{b+c}=frac{abc+bcd}{b+c}$, and you therefore need to show that $displaystyle ab+bc+cd=3frac{abc+bcd}{b+c}$, or equivalently that $$displaystyle (b+c)(ab+bc+cd)=3(abc+bcd).$$
Now, $3(abc+bcd)\=(abc+bcd)+2(color{green}{abc}+color{blue}{bcd})\=abc+bcd+(ab^2+b^2c)+(bc^2+c^2d)\=ab^2+b^2c+bcd+abc+bc^2+c^2d\=b(ab+bc+cd)+c(ab+bc+cd).$
edited Jan 29 at 7:23
user69284
17918
17918
answered Sep 9 '18 at 19:23
Steve KassSteve Kass
11.4k11530
11.4k11530
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2910388%2fsolve-if-a-b-c-d-are-in-h-p-then-prove-that-ab-bc-cd-3ad%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Please read this MathJax tutorial, which explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
Sep 9 '18 at 7:24