uniform Effect of K-means Clustering
In the following link is discussed the uniform Effect of K-means Clustering:
https://www.springer.com/cda/content/document/cda_downloaddocument/9783642298066-c2.pdf?SGWID=0-0-45-1338325-p174318763
He used the following equation:
$ frac{displaystyle2 d(C_1,C_2)}{displaystyle n_1n_2}=frac{displaystyle d(C_1,C_1)}{displaystyle n_1^2}+frac{displaystyle d(C_2,C_2)}{displaystyle n_2^2}+2||m_1−m_2||^2.$
where
$ d(C_1,C_2)=sum_{x_iin C_1}sum_{x_jin C_2}||x_i−x_j||^2$ with $ |C_1|=n_1$ and $|C_2 |=n_2$.
I tried to prove this, but I do not get this. He uses the fact that
$ d(C_1,C_1)=2(n_1-1)sum_{i=1}^{n_1} ||x_i||^2 -4 sum_{1leq i < j leq n_1}langle x_i,x_jrangle.$
$ d(C_2,C_2)=2(n_2-1)sum_{i=1}^{n_2} ||y_i||^2 -4 sum_{1leq i < j leq n_2}langle y_i,y_jrangle.$
$ d(C_1,C_2)=2n_2sum_{i=1}^{n_1} ||x_i||^2+2n_1sum_{i=1}^{n_2} ||y_i||^2 -4 sum_{1leq ileq n_1}sum_{1leq jleq n_2}langle x_i,y_jrangle.$
And furthermore with
$||m_1−m_2||^2=langle sum_{i=1}^{n_1}x_i/n_1-sum_{j=1}^{n_1}y_j/n_2,sum_{i=1}^{n_1}x_i/n_1-sum_{j=1}^{n_1}y_j/n_2 rangle = frac{1}{displaystyle n_1^2}sum_{i=1}^{n_1} ||x_i||^2 + frac{2}{displaystyle n_1^2}sum_{1leq i < jleq n_1} langle x_i, x_jrangle +frac{1}{displaystyle n_2^2}sum_{i=1}^{n_2} ||y_i||^2 + frac{2}{displaystyle n_2^2}sum_{1leq i < jleq n_2} langle y_i, y_jrangle - frac{2}{n_1n_2} sum_{1leq ileq n_1}sum_{1leq jleq n_2}langle x_i,y_jrangle, $
I obtain that
$ frac{displaystyle d(C_1,C_2)}{displaystyle n_1n_2}=frac{displaystyle d(C_1,C_1)}{displaystyle n_1^2}+frac{displaystyle d(C_2,C_2)}{displaystyle n_2^2}+2||m_1−m_2||^2.$
Where is my error?
analysis vector-analysis machine-learning clustering data-mining
add a comment |
In the following link is discussed the uniform Effect of K-means Clustering:
https://www.springer.com/cda/content/document/cda_downloaddocument/9783642298066-c2.pdf?SGWID=0-0-45-1338325-p174318763
He used the following equation:
$ frac{displaystyle2 d(C_1,C_2)}{displaystyle n_1n_2}=frac{displaystyle d(C_1,C_1)}{displaystyle n_1^2}+frac{displaystyle d(C_2,C_2)}{displaystyle n_2^2}+2||m_1−m_2||^2.$
where
$ d(C_1,C_2)=sum_{x_iin C_1}sum_{x_jin C_2}||x_i−x_j||^2$ with $ |C_1|=n_1$ and $|C_2 |=n_2$.
I tried to prove this, but I do not get this. He uses the fact that
$ d(C_1,C_1)=2(n_1-1)sum_{i=1}^{n_1} ||x_i||^2 -4 sum_{1leq i < j leq n_1}langle x_i,x_jrangle.$
$ d(C_2,C_2)=2(n_2-1)sum_{i=1}^{n_2} ||y_i||^2 -4 sum_{1leq i < j leq n_2}langle y_i,y_jrangle.$
$ d(C_1,C_2)=2n_2sum_{i=1}^{n_1} ||x_i||^2+2n_1sum_{i=1}^{n_2} ||y_i||^2 -4 sum_{1leq ileq n_1}sum_{1leq jleq n_2}langle x_i,y_jrangle.$
And furthermore with
$||m_1−m_2||^2=langle sum_{i=1}^{n_1}x_i/n_1-sum_{j=1}^{n_1}y_j/n_2,sum_{i=1}^{n_1}x_i/n_1-sum_{j=1}^{n_1}y_j/n_2 rangle = frac{1}{displaystyle n_1^2}sum_{i=1}^{n_1} ||x_i||^2 + frac{2}{displaystyle n_1^2}sum_{1leq i < jleq n_1} langle x_i, x_jrangle +frac{1}{displaystyle n_2^2}sum_{i=1}^{n_2} ||y_i||^2 + frac{2}{displaystyle n_2^2}sum_{1leq i < jleq n_2} langle y_i, y_jrangle - frac{2}{n_1n_2} sum_{1leq ileq n_1}sum_{1leq jleq n_2}langle x_i,y_jrangle, $
I obtain that
$ frac{displaystyle d(C_1,C_2)}{displaystyle n_1n_2}=frac{displaystyle d(C_1,C_1)}{displaystyle n_1^2}+frac{displaystyle d(C_2,C_2)}{displaystyle n_2^2}+2||m_1−m_2||^2.$
Where is my error?
analysis vector-analysis machine-learning clustering data-mining
I suggest working through the case $n_1=1, n_2=2$ to see where your derivation goes wrong (the paper is definitely correct). Maybe you've forgotten that $||x_i-x_j||^2$ appears twice in each $d(C_i,C_i)$?
– Matthew Towers
Nov 23 '18 at 17:59
add a comment |
In the following link is discussed the uniform Effect of K-means Clustering:
https://www.springer.com/cda/content/document/cda_downloaddocument/9783642298066-c2.pdf?SGWID=0-0-45-1338325-p174318763
He used the following equation:
$ frac{displaystyle2 d(C_1,C_2)}{displaystyle n_1n_2}=frac{displaystyle d(C_1,C_1)}{displaystyle n_1^2}+frac{displaystyle d(C_2,C_2)}{displaystyle n_2^2}+2||m_1−m_2||^2.$
where
$ d(C_1,C_2)=sum_{x_iin C_1}sum_{x_jin C_2}||x_i−x_j||^2$ with $ |C_1|=n_1$ and $|C_2 |=n_2$.
I tried to prove this, but I do not get this. He uses the fact that
$ d(C_1,C_1)=2(n_1-1)sum_{i=1}^{n_1} ||x_i||^2 -4 sum_{1leq i < j leq n_1}langle x_i,x_jrangle.$
$ d(C_2,C_2)=2(n_2-1)sum_{i=1}^{n_2} ||y_i||^2 -4 sum_{1leq i < j leq n_2}langle y_i,y_jrangle.$
$ d(C_1,C_2)=2n_2sum_{i=1}^{n_1} ||x_i||^2+2n_1sum_{i=1}^{n_2} ||y_i||^2 -4 sum_{1leq ileq n_1}sum_{1leq jleq n_2}langle x_i,y_jrangle.$
And furthermore with
$||m_1−m_2||^2=langle sum_{i=1}^{n_1}x_i/n_1-sum_{j=1}^{n_1}y_j/n_2,sum_{i=1}^{n_1}x_i/n_1-sum_{j=1}^{n_1}y_j/n_2 rangle = frac{1}{displaystyle n_1^2}sum_{i=1}^{n_1} ||x_i||^2 + frac{2}{displaystyle n_1^2}sum_{1leq i < jleq n_1} langle x_i, x_jrangle +frac{1}{displaystyle n_2^2}sum_{i=1}^{n_2} ||y_i||^2 + frac{2}{displaystyle n_2^2}sum_{1leq i < jleq n_2} langle y_i, y_jrangle - frac{2}{n_1n_2} sum_{1leq ileq n_1}sum_{1leq jleq n_2}langle x_i,y_jrangle, $
I obtain that
$ frac{displaystyle d(C_1,C_2)}{displaystyle n_1n_2}=frac{displaystyle d(C_1,C_1)}{displaystyle n_1^2}+frac{displaystyle d(C_2,C_2)}{displaystyle n_2^2}+2||m_1−m_2||^2.$
Where is my error?
analysis vector-analysis machine-learning clustering data-mining
In the following link is discussed the uniform Effect of K-means Clustering:
https://www.springer.com/cda/content/document/cda_downloaddocument/9783642298066-c2.pdf?SGWID=0-0-45-1338325-p174318763
He used the following equation:
$ frac{displaystyle2 d(C_1,C_2)}{displaystyle n_1n_2}=frac{displaystyle d(C_1,C_1)}{displaystyle n_1^2}+frac{displaystyle d(C_2,C_2)}{displaystyle n_2^2}+2||m_1−m_2||^2.$
where
$ d(C_1,C_2)=sum_{x_iin C_1}sum_{x_jin C_2}||x_i−x_j||^2$ with $ |C_1|=n_1$ and $|C_2 |=n_2$.
I tried to prove this, but I do not get this. He uses the fact that
$ d(C_1,C_1)=2(n_1-1)sum_{i=1}^{n_1} ||x_i||^2 -4 sum_{1leq i < j leq n_1}langle x_i,x_jrangle.$
$ d(C_2,C_2)=2(n_2-1)sum_{i=1}^{n_2} ||y_i||^2 -4 sum_{1leq i < j leq n_2}langle y_i,y_jrangle.$
$ d(C_1,C_2)=2n_2sum_{i=1}^{n_1} ||x_i||^2+2n_1sum_{i=1}^{n_2} ||y_i||^2 -4 sum_{1leq ileq n_1}sum_{1leq jleq n_2}langle x_i,y_jrangle.$
And furthermore with
$||m_1−m_2||^2=langle sum_{i=1}^{n_1}x_i/n_1-sum_{j=1}^{n_1}y_j/n_2,sum_{i=1}^{n_1}x_i/n_1-sum_{j=1}^{n_1}y_j/n_2 rangle = frac{1}{displaystyle n_1^2}sum_{i=1}^{n_1} ||x_i||^2 + frac{2}{displaystyle n_1^2}sum_{1leq i < jleq n_1} langle x_i, x_jrangle +frac{1}{displaystyle n_2^2}sum_{i=1}^{n_2} ||y_i||^2 + frac{2}{displaystyle n_2^2}sum_{1leq i < jleq n_2} langle y_i, y_jrangle - frac{2}{n_1n_2} sum_{1leq ileq n_1}sum_{1leq jleq n_2}langle x_i,y_jrangle, $
I obtain that
$ frac{displaystyle d(C_1,C_2)}{displaystyle n_1n_2}=frac{displaystyle d(C_1,C_1)}{displaystyle n_1^2}+frac{displaystyle d(C_2,C_2)}{displaystyle n_2^2}+2||m_1−m_2||^2.$
Where is my error?
analysis vector-analysis machine-learning clustering data-mining
analysis vector-analysis machine-learning clustering data-mining
edited Nov 21 '18 at 11:19
asked Nov 20 '18 at 18:44
Patricio
17212
17212
I suggest working through the case $n_1=1, n_2=2$ to see where your derivation goes wrong (the paper is definitely correct). Maybe you've forgotten that $||x_i-x_j||^2$ appears twice in each $d(C_i,C_i)$?
– Matthew Towers
Nov 23 '18 at 17:59
add a comment |
I suggest working through the case $n_1=1, n_2=2$ to see where your derivation goes wrong (the paper is definitely correct). Maybe you've forgotten that $||x_i-x_j||^2$ appears twice in each $d(C_i,C_i)$?
– Matthew Towers
Nov 23 '18 at 17:59
I suggest working through the case $n_1=1, n_2=2$ to see where your derivation goes wrong (the paper is definitely correct). Maybe you've forgotten that $||x_i-x_j||^2$ appears twice in each $d(C_i,C_i)$?
– Matthew Towers
Nov 23 '18 at 17:59
I suggest working through the case $n_1=1, n_2=2$ to see where your derivation goes wrong (the paper is definitely correct). Maybe you've forgotten that $||x_i-x_j||^2$ appears twice in each $d(C_i,C_i)$?
– Matthew Towers
Nov 23 '18 at 17:59
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006724%2funiform-effect-of-k-means-clustering%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006724%2funiform-effect-of-k-means-clustering%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I suggest working through the case $n_1=1, n_2=2$ to see where your derivation goes wrong (the paper is definitely correct). Maybe you've forgotten that $||x_i-x_j||^2$ appears twice in each $d(C_i,C_i)$?
– Matthew Towers
Nov 23 '18 at 17:59