Approximation of eigenvalues of matrix












1












$begingroup$


We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}



I want to find an approximation of the eigenvalues using 1 step of the QR method.



I have done the following:



First we find the QR decomposition of $A$, so we get the matrices begin{equation*}Q=begin{pmatrix}0.907651 & -0.415323 & -0.055244 & -0.0249738 \ 0.363061 & 0.846984 & -0.38676 & -0.0349633 \ 0.18153 & 0.302883 & 0.865764 & -0.354628 \ 0.106783 & 0.135599 & 0.312758 & 0.93402end{pmatrix}end{equation*} and begin{equation*}R=begin{pmatrix}0.550872 & 0.410045 & 0.275499 & 0.136682 \ 0 & 0.414564 & 0.306426 & 0.134404 \ 0 & 0 & 0.412557 & 0.162503 \ 0 & 0 & 0 & 0.017511end{pmatrix}end{equation*}



Then we get begin{equation*}A_1=RQ=begin{pmatrix}0.709622 & 0.212327 & 0.0966156 & 0.0014864 \ 0.219891 & 0.462078 & 0.1464 & 0.0016014 \ 0.091623 & 0.147077 & 0.408059 & 0.00481704 \ 0.001869 & 0.00238 & 0.005474 & 0.016275end{pmatrix}end{equation*}



Therefore an approximation of the eigenvalues are the elements of the diagonal because the result of the QR method is approximately a diagonal matrix or not?










share|cite|improve this question









$endgroup$












  • $begingroup$
    So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
    $endgroup$
    – Mary Star
    Feb 3 at 7:29










  • $begingroup$
    Or is the matrix that I have calculated wrong? @Moo
    $endgroup$
    – Mary Star
    Feb 3 at 7:50










  • $begingroup$
    Ok! Thank you!! :-) @Moo
    $endgroup$
    – Mary Star
    Feb 4 at 2:39
















1












$begingroup$


We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}



I want to find an approximation of the eigenvalues using 1 step of the QR method.



I have done the following:



First we find the QR decomposition of $A$, so we get the matrices begin{equation*}Q=begin{pmatrix}0.907651 & -0.415323 & -0.055244 & -0.0249738 \ 0.363061 & 0.846984 & -0.38676 & -0.0349633 \ 0.18153 & 0.302883 & 0.865764 & -0.354628 \ 0.106783 & 0.135599 & 0.312758 & 0.93402end{pmatrix}end{equation*} and begin{equation*}R=begin{pmatrix}0.550872 & 0.410045 & 0.275499 & 0.136682 \ 0 & 0.414564 & 0.306426 & 0.134404 \ 0 & 0 & 0.412557 & 0.162503 \ 0 & 0 & 0 & 0.017511end{pmatrix}end{equation*}



Then we get begin{equation*}A_1=RQ=begin{pmatrix}0.709622 & 0.212327 & 0.0966156 & 0.0014864 \ 0.219891 & 0.462078 & 0.1464 & 0.0016014 \ 0.091623 & 0.147077 & 0.408059 & 0.00481704 \ 0.001869 & 0.00238 & 0.005474 & 0.016275end{pmatrix}end{equation*}



Therefore an approximation of the eigenvalues are the elements of the diagonal because the result of the QR method is approximately a diagonal matrix or not?










share|cite|improve this question









$endgroup$












  • $begingroup$
    So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
    $endgroup$
    – Mary Star
    Feb 3 at 7:29










  • $begingroup$
    Or is the matrix that I have calculated wrong? @Moo
    $endgroup$
    – Mary Star
    Feb 3 at 7:50










  • $begingroup$
    Ok! Thank you!! :-) @Moo
    $endgroup$
    – Mary Star
    Feb 4 at 2:39














1












1








1





$begingroup$


We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}



I want to find an approximation of the eigenvalues using 1 step of the QR method.



I have done the following:



First we find the QR decomposition of $A$, so we get the matrices begin{equation*}Q=begin{pmatrix}0.907651 & -0.415323 & -0.055244 & -0.0249738 \ 0.363061 & 0.846984 & -0.38676 & -0.0349633 \ 0.18153 & 0.302883 & 0.865764 & -0.354628 \ 0.106783 & 0.135599 & 0.312758 & 0.93402end{pmatrix}end{equation*} and begin{equation*}R=begin{pmatrix}0.550872 & 0.410045 & 0.275499 & 0.136682 \ 0 & 0.414564 & 0.306426 & 0.134404 \ 0 & 0 & 0.412557 & 0.162503 \ 0 & 0 & 0 & 0.017511end{pmatrix}end{equation*}



Then we get begin{equation*}A_1=RQ=begin{pmatrix}0.709622 & 0.212327 & 0.0966156 & 0.0014864 \ 0.219891 & 0.462078 & 0.1464 & 0.0016014 \ 0.091623 & 0.147077 & 0.408059 & 0.00481704 \ 0.001869 & 0.00238 & 0.005474 & 0.016275end{pmatrix}end{equation*}



Therefore an approximation of the eigenvalues are the elements of the diagonal because the result of the QR method is approximately a diagonal matrix or not?










share|cite|improve this question









$endgroup$




We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}



I want to find an approximation of the eigenvalues using 1 step of the QR method.



I have done the following:



First we find the QR decomposition of $A$, so we get the matrices begin{equation*}Q=begin{pmatrix}0.907651 & -0.415323 & -0.055244 & -0.0249738 \ 0.363061 & 0.846984 & -0.38676 & -0.0349633 \ 0.18153 & 0.302883 & 0.865764 & -0.354628 \ 0.106783 & 0.135599 & 0.312758 & 0.93402end{pmatrix}end{equation*} and begin{equation*}R=begin{pmatrix}0.550872 & 0.410045 & 0.275499 & 0.136682 \ 0 & 0.414564 & 0.306426 & 0.134404 \ 0 & 0 & 0.412557 & 0.162503 \ 0 & 0 & 0 & 0.017511end{pmatrix}end{equation*}



Then we get begin{equation*}A_1=RQ=begin{pmatrix}0.709622 & 0.212327 & 0.0966156 & 0.0014864 \ 0.219891 & 0.462078 & 0.1464 & 0.0016014 \ 0.091623 & 0.147077 & 0.408059 & 0.00481704 \ 0.001869 & 0.00238 & 0.005474 & 0.016275end{pmatrix}end{equation*}



Therefore an approximation of the eigenvalues are the elements of the diagonal because the result of the QR method is approximately a diagonal matrix or not?







numerical-methods eigenvalues-eigenvectors approximation matrix-decomposition






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 3 at 3:43









Mary StarMary Star

3,10982477




3,10982477












  • $begingroup$
    So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
    $endgroup$
    – Mary Star
    Feb 3 at 7:29










  • $begingroup$
    Or is the matrix that I have calculated wrong? @Moo
    $endgroup$
    – Mary Star
    Feb 3 at 7:50










  • $begingroup$
    Ok! Thank you!! :-) @Moo
    $endgroup$
    – Mary Star
    Feb 4 at 2:39


















  • $begingroup$
    So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
    $endgroup$
    – Mary Star
    Feb 3 at 7:29










  • $begingroup$
    Or is the matrix that I have calculated wrong? @Moo
    $endgroup$
    – Mary Star
    Feb 3 at 7:50










  • $begingroup$
    Ok! Thank you!! :-) @Moo
    $endgroup$
    – Mary Star
    Feb 4 at 2:39
















$begingroup$
So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:29




$begingroup$
So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:29












$begingroup$
Or is the matrix that I have calculated wrong? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:50




$begingroup$
Or is the matrix that I have calculated wrong? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:50












$begingroup$
Ok! Thank you!! :-) @Moo
$endgroup$
– Mary Star
Feb 4 at 2:39




$begingroup$
Ok! Thank you!! :-) @Moo
$endgroup$
– Mary Star
Feb 4 at 2:39










1 Answer
1






active

oldest

votes


















0












$begingroup$

If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098144%2fapproximation-of-eigenvalues-of-matrix%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.






        share|cite|improve this answer









        $endgroup$



        If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 4 at 11:07









        PierreCarrePierreCarre

        2,158215




        2,158215






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098144%2fapproximation-of-eigenvalues-of-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            Npm cannot find a required file even through it is in the searched directory

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith