Approximation of eigenvalues of matrix
$begingroup$
We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}
I want to find an approximation of the eigenvalues using 1 step of the QR method.
I have done the following:
First we find the QR decomposition of $A$, so we get the matrices begin{equation*}Q=begin{pmatrix}0.907651 & -0.415323 & -0.055244 & -0.0249738 \ 0.363061 & 0.846984 & -0.38676 & -0.0349633 \ 0.18153 & 0.302883 & 0.865764 & -0.354628 \ 0.106783 & 0.135599 & 0.312758 & 0.93402end{pmatrix}end{equation*} and begin{equation*}R=begin{pmatrix}0.550872 & 0.410045 & 0.275499 & 0.136682 \ 0 & 0.414564 & 0.306426 & 0.134404 \ 0 & 0 & 0.412557 & 0.162503 \ 0 & 0 & 0 & 0.017511end{pmatrix}end{equation*}
Then we get begin{equation*}A_1=RQ=begin{pmatrix}0.709622 & 0.212327 & 0.0966156 & 0.0014864 \ 0.219891 & 0.462078 & 0.1464 & 0.0016014 \ 0.091623 & 0.147077 & 0.408059 & 0.00481704 \ 0.001869 & 0.00238 & 0.005474 & 0.016275end{pmatrix}end{equation*}
Therefore an approximation of the eigenvalues are the elements of the diagonal because the result of the QR method is approximately a diagonal matrix or not?
numerical-methods eigenvalues-eigenvectors approximation matrix-decomposition
$endgroup$
add a comment |
$begingroup$
We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}
I want to find an approximation of the eigenvalues using 1 step of the QR method.
I have done the following:
First we find the QR decomposition of $A$, so we get the matrices begin{equation*}Q=begin{pmatrix}0.907651 & -0.415323 & -0.055244 & -0.0249738 \ 0.363061 & 0.846984 & -0.38676 & -0.0349633 \ 0.18153 & 0.302883 & 0.865764 & -0.354628 \ 0.106783 & 0.135599 & 0.312758 & 0.93402end{pmatrix}end{equation*} and begin{equation*}R=begin{pmatrix}0.550872 & 0.410045 & 0.275499 & 0.136682 \ 0 & 0.414564 & 0.306426 & 0.134404 \ 0 & 0 & 0.412557 & 0.162503 \ 0 & 0 & 0 & 0.017511end{pmatrix}end{equation*}
Then we get begin{equation*}A_1=RQ=begin{pmatrix}0.709622 & 0.212327 & 0.0966156 & 0.0014864 \ 0.219891 & 0.462078 & 0.1464 & 0.0016014 \ 0.091623 & 0.147077 & 0.408059 & 0.00481704 \ 0.001869 & 0.00238 & 0.005474 & 0.016275end{pmatrix}end{equation*}
Therefore an approximation of the eigenvalues are the elements of the diagonal because the result of the QR method is approximately a diagonal matrix or not?
numerical-methods eigenvalues-eigenvectors approximation matrix-decomposition
$endgroup$
$begingroup$
So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:29
$begingroup$
Or is the matrix that I have calculated wrong? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:50
$begingroup$
Ok! Thank you!! :-) @Moo
$endgroup$
– Mary Star
Feb 4 at 2:39
add a comment |
$begingroup$
We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}
I want to find an approximation of the eigenvalues using 1 step of the QR method.
I have done the following:
First we find the QR decomposition of $A$, so we get the matrices begin{equation*}Q=begin{pmatrix}0.907651 & -0.415323 & -0.055244 & -0.0249738 \ 0.363061 & 0.846984 & -0.38676 & -0.0349633 \ 0.18153 & 0.302883 & 0.865764 & -0.354628 \ 0.106783 & 0.135599 & 0.312758 & 0.93402end{pmatrix}end{equation*} and begin{equation*}R=begin{pmatrix}0.550872 & 0.410045 & 0.275499 & 0.136682 \ 0 & 0.414564 & 0.306426 & 0.134404 \ 0 & 0 & 0.412557 & 0.162503 \ 0 & 0 & 0 & 0.017511end{pmatrix}end{equation*}
Then we get begin{equation*}A_1=RQ=begin{pmatrix}0.709622 & 0.212327 & 0.0966156 & 0.0014864 \ 0.219891 & 0.462078 & 0.1464 & 0.0016014 \ 0.091623 & 0.147077 & 0.408059 & 0.00481704 \ 0.001869 & 0.00238 & 0.005474 & 0.016275end{pmatrix}end{equation*}
Therefore an approximation of the eigenvalues are the elements of the diagonal because the result of the QR method is approximately a diagonal matrix or not?
numerical-methods eigenvalues-eigenvectors approximation matrix-decomposition
$endgroup$
We have the matrix begin{equation*}A=begin{pmatrix}1/2 & 1/5 & 1/10 & 1/17 \ 1/5 & 1/2 & 1/5 & 1/10 \ 1/10 & 1/5 & 1/2 & 1/5 \ 1/17 & 1/10 & 1/5 & 1/10end{pmatrix}end{equation*}
I want to find an approximation of the eigenvalues using 1 step of the QR method.
I have done the following:
First we find the QR decomposition of $A$, so we get the matrices begin{equation*}Q=begin{pmatrix}0.907651 & -0.415323 & -0.055244 & -0.0249738 \ 0.363061 & 0.846984 & -0.38676 & -0.0349633 \ 0.18153 & 0.302883 & 0.865764 & -0.354628 \ 0.106783 & 0.135599 & 0.312758 & 0.93402end{pmatrix}end{equation*} and begin{equation*}R=begin{pmatrix}0.550872 & 0.410045 & 0.275499 & 0.136682 \ 0 & 0.414564 & 0.306426 & 0.134404 \ 0 & 0 & 0.412557 & 0.162503 \ 0 & 0 & 0 & 0.017511end{pmatrix}end{equation*}
Then we get begin{equation*}A_1=RQ=begin{pmatrix}0.709622 & 0.212327 & 0.0966156 & 0.0014864 \ 0.219891 & 0.462078 & 0.1464 & 0.0016014 \ 0.091623 & 0.147077 & 0.408059 & 0.00481704 \ 0.001869 & 0.00238 & 0.005474 & 0.016275end{pmatrix}end{equation*}
Therefore an approximation of the eigenvalues are the elements of the diagonal because the result of the QR method is approximately a diagonal matrix or not?
numerical-methods eigenvalues-eigenvectors approximation matrix-decomposition
numerical-methods eigenvalues-eigenvectors approximation matrix-decomposition
asked Feb 3 at 3:43
Mary StarMary Star
3,10982477
3,10982477
$begingroup$
So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:29
$begingroup$
Or is the matrix that I have calculated wrong? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:50
$begingroup$
Ok! Thank you!! :-) @Moo
$endgroup$
– Mary Star
Feb 4 at 2:39
add a comment |
$begingroup$
So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:29
$begingroup$
Or is the matrix that I have calculated wrong? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:50
$begingroup$
Ok! Thank you!! :-) @Moo
$endgroup$
– Mary Star
Feb 4 at 2:39
$begingroup$
So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:29
$begingroup$
So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:29
$begingroup$
Or is the matrix that I have calculated wrong? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:50
$begingroup$
Or is the matrix that I have calculated wrong? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:50
$begingroup$
Ok! Thank you!! :-) @Moo
$endgroup$
– Mary Star
Feb 4 at 2:39
$begingroup$
Ok! Thank you!! :-) @Moo
$endgroup$
– Mary Star
Feb 4 at 2:39
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098144%2fapproximation-of-eigenvalues-of-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.
$endgroup$
add a comment |
$begingroup$
If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.
$endgroup$
add a comment |
$begingroup$
If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.
$endgroup$
If the method converges, the matrices $A_k$ converge to a triangular matrix with the same eigenvalues as $A$. So the answer is yes, if you just perform one step of the $QR$ method, your estimate for the eigenvalues would be the diagonal elements of $A_1$.
answered Feb 4 at 11:07


PierreCarrePierreCarre
2,158215
2,158215
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098144%2fapproximation-of-eigenvalues-of-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
So, are the eements of the diagonal not an approximation of the eigenvalues? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:29
$begingroup$
Or is the matrix that I have calculated wrong? @Moo
$endgroup$
– Mary Star
Feb 3 at 7:50
$begingroup$
Ok! Thank you!! :-) @Moo
$endgroup$
– Mary Star
Feb 4 at 2:39