Completing squares, what are the steps: $2x^2-x(5+m)+(3+m)=0$












0












$begingroup$


I have the following equation:



$$2x^2-x(5+m)+(3+m)=0.$$



I want to find values of $m$ but I forgot the completing squares procedures. Can someone please describe this method for this particular equation?!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Look at the second answer on this question math.stackexchange.com/questions/20597/…"
    $endgroup$
    – Chris K. Caldwell
    Apr 12 '12 at 13:38












  • $begingroup$
    If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
    $endgroup$
    – André Nicolas
    Apr 12 '12 at 14:41
















0












$begingroup$


I have the following equation:



$$2x^2-x(5+m)+(3+m)=0.$$



I want to find values of $m$ but I forgot the completing squares procedures. Can someone please describe this method for this particular equation?!










share|cite|improve this question











$endgroup$












  • $begingroup$
    Look at the second answer on this question math.stackexchange.com/questions/20597/…"
    $endgroup$
    – Chris K. Caldwell
    Apr 12 '12 at 13:38












  • $begingroup$
    If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
    $endgroup$
    – André Nicolas
    Apr 12 '12 at 14:41














0












0








0





$begingroup$


I have the following equation:



$$2x^2-x(5+m)+(3+m)=0.$$



I want to find values of $m$ but I forgot the completing squares procedures. Can someone please describe this method for this particular equation?!










share|cite|improve this question











$endgroup$




I have the following equation:



$$2x^2-x(5+m)+(3+m)=0.$$



I want to find values of $m$ but I forgot the completing squares procedures. Can someone please describe this method for this particular equation?!







algebra-precalculus quadratics completing-the-square






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 3 at 9:07









Martin Sleziak

45k10123277




45k10123277










asked Apr 12 '12 at 13:33









Sean87Sean87

3152823




3152823












  • $begingroup$
    Look at the second answer on this question math.stackexchange.com/questions/20597/…"
    $endgroup$
    – Chris K. Caldwell
    Apr 12 '12 at 13:38












  • $begingroup$
    If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
    $endgroup$
    – André Nicolas
    Apr 12 '12 at 14:41


















  • $begingroup$
    Look at the second answer on this question math.stackexchange.com/questions/20597/…"
    $endgroup$
    – Chris K. Caldwell
    Apr 12 '12 at 13:38












  • $begingroup$
    If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
    $endgroup$
    – André Nicolas
    Apr 12 '12 at 14:41
















$begingroup$
Look at the second answer on this question math.stackexchange.com/questions/20597/…"
$endgroup$
– Chris K. Caldwell
Apr 12 '12 at 13:38






$begingroup$
Look at the second answer on this question math.stackexchange.com/questions/20597/…"
$endgroup$
– Chris K. Caldwell
Apr 12 '12 at 13:38














$begingroup$
If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
$endgroup$
– André Nicolas
Apr 12 '12 at 14:41




$begingroup$
If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
$endgroup$
– André Nicolas
Apr 12 '12 at 14:41










3 Answers
3






active

oldest

votes


















2












$begingroup$

To complete the square on the left hand side of your equation, first factor out the $2$:
$$tag{1}
2x^2-x(5+m)+(3+m) =2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
$$
Write down what you want:
$$tag{2}
{x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
$$
Write the right hand side of $(2)$ as
$$tag{3}
x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
$$
Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
$$textstyle
color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
$$
Now use equations $(2)$ and $(3)$ to find the value of $k$:
$$textstyle
color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
$$



So
$$
x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
$$
and
$$eqalign{
2x^2-x(5+m)+(3+m)
&=2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
&=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
&=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
}
$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thanks, I am still confused about what to do with $m$ in my equation?
      $endgroup$
      – Sean87
      Apr 12 '12 at 13:52










    • $begingroup$
      actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
      $endgroup$
      – chemeng
      Apr 12 '12 at 14:03



















    2












    $begingroup$

    $$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$



    $$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$



    $$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$



    $$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f130865%2fcompleting-squares-what-are-the-steps-2x2-x5m3m-0%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      To complete the square on the left hand side of your equation, first factor out the $2$:
      $$tag{1}
      2x^2-x(5+m)+(3+m) =2bigl(
      {x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
      $$
      Write down what you want:
      $$tag{2}
      {x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
      $$
      Write the right hand side of $(2)$ as
      $$tag{3}
      x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
      $$
      Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
      $$textstyle
      color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
      $$
      Now use equations $(2)$ and $(3)$ to find the value of $k$:
      $$textstyle
      color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
      k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
      $$



      So
      $$
      x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
      bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
      $$
      and
      $$eqalign{
      2x^2-x(5+m)+(3+m)
      &=2bigl(
      {x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
      &=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
      &=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
      }
      $$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        To complete the square on the left hand side of your equation, first factor out the $2$:
        $$tag{1}
        2x^2-x(5+m)+(3+m) =2bigl(
        {x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
        $$
        Write down what you want:
        $$tag{2}
        {x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
        $$
        Write the right hand side of $(2)$ as
        $$tag{3}
        x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
        $$
        Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
        $$textstyle
        color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
        $$
        Now use equations $(2)$ and $(3)$ to find the value of $k$:
        $$textstyle
        color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
        k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
        $$



        So
        $$
        x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
        bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
        $$
        and
        $$eqalign{
        2x^2-x(5+m)+(3+m)
        &=2bigl(
        {x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
        &=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
        &=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
        }
        $$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          To complete the square on the left hand side of your equation, first factor out the $2$:
          $$tag{1}
          2x^2-x(5+m)+(3+m) =2bigl(
          {x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
          $$
          Write down what you want:
          $$tag{2}
          {x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
          $$
          Write the right hand side of $(2)$ as
          $$tag{3}
          x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
          $$
          Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
          $$textstyle
          color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
          $$
          Now use equations $(2)$ and $(3)$ to find the value of $k$:
          $$textstyle
          color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
          k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
          $$



          So
          $$
          x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
          bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
          $$
          and
          $$eqalign{
          2x^2-x(5+m)+(3+m)
          &=2bigl(
          {x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
          &=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
          &=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
          }
          $$






          share|cite|improve this answer









          $endgroup$



          To complete the square on the left hand side of your equation, first factor out the $2$:
          $$tag{1}
          2x^2-x(5+m)+(3+m) =2bigl(
          {x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
          $$
          Write down what you want:
          $$tag{2}
          {x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
          $$
          Write the right hand side of $(2)$ as
          $$tag{3}
          x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
          $$
          Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
          $$textstyle
          color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
          $$
          Now use equations $(2)$ and $(3)$ to find the value of $k$:
          $$textstyle
          color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
          k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
          $$



          So
          $$
          x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
          bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
          $$
          and
          $$eqalign{
          2x^2-x(5+m)+(3+m)
          &=2bigl(
          {x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
          &=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
          &=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
          }
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 12 '12 at 14:12









          David MitraDavid Mitra

          63.8k6102165




          63.8k6102165























              2












              $begingroup$

              In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thanks, I am still confused about what to do with $m$ in my equation?
                $endgroup$
                – Sean87
                Apr 12 '12 at 13:52










              • $begingroup$
                actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
                $endgroup$
                – chemeng
                Apr 12 '12 at 14:03
















              2












              $begingroup$

              In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Thanks, I am still confused about what to do with $m$ in my equation?
                $endgroup$
                – Sean87
                Apr 12 '12 at 13:52










              • $begingroup$
                actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
                $endgroup$
                – chemeng
                Apr 12 '12 at 14:03














              2












              2








              2





              $begingroup$

              In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$






              share|cite|improve this answer









              $endgroup$



              In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Apr 12 '12 at 13:38









              chemengchemeng

              1,6831112




              1,6831112












              • $begingroup$
                Thanks, I am still confused about what to do with $m$ in my equation?
                $endgroup$
                – Sean87
                Apr 12 '12 at 13:52










              • $begingroup$
                actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
                $endgroup$
                – chemeng
                Apr 12 '12 at 14:03


















              • $begingroup$
                Thanks, I am still confused about what to do with $m$ in my equation?
                $endgroup$
                – Sean87
                Apr 12 '12 at 13:52










              • $begingroup$
                actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
                $endgroup$
                – chemeng
                Apr 12 '12 at 14:03
















              $begingroup$
              Thanks, I am still confused about what to do with $m$ in my equation?
              $endgroup$
              – Sean87
              Apr 12 '12 at 13:52




              $begingroup$
              Thanks, I am still confused about what to do with $m$ in my equation?
              $endgroup$
              – Sean87
              Apr 12 '12 at 13:52












              $begingroup$
              actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
              $endgroup$
              – chemeng
              Apr 12 '12 at 14:03




              $begingroup$
              actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
              $endgroup$
              – chemeng
              Apr 12 '12 at 14:03











              2












              $begingroup$

              $$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$



              $$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$



              $$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$



              $$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                $$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$



                $$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$



                $$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$



                $$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  $$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$



                  $$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$



                  $$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$



                  $$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$






                  share|cite|improve this answer









                  $endgroup$



                  $$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$



                  $$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$



                  $$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$



                  $$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Apr 12 '12 at 14:04









                  Peđa TerzićPeđa Terzić

                  7,67922674




                  7,67922674






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f130865%2fcompleting-squares-what-are-the-steps-2x2-x5m3m-0%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      'app-layout' is not a known element: how to share Component with different Modules

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      WPF add header to Image with URL pettitions [duplicate]