Completing squares, what are the steps: $2x^2-x(5+m)+(3+m)=0$
$begingroup$
I have the following equation:
$$2x^2-x(5+m)+(3+m)=0.$$
I want to find values of $m$ but I forgot the completing squares procedures. Can someone please describe this method for this particular equation?!
algebra-precalculus quadratics completing-the-square
$endgroup$
add a comment |
$begingroup$
I have the following equation:
$$2x^2-x(5+m)+(3+m)=0.$$
I want to find values of $m$ but I forgot the completing squares procedures. Can someone please describe this method for this particular equation?!
algebra-precalculus quadratics completing-the-square
$endgroup$
$begingroup$
Look at the second answer on this question math.stackexchange.com/questions/20597/…"
$endgroup$
– Chris K. Caldwell
Apr 12 '12 at 13:38
$begingroup$
If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
$endgroup$
– André Nicolas
Apr 12 '12 at 14:41
add a comment |
$begingroup$
I have the following equation:
$$2x^2-x(5+m)+(3+m)=0.$$
I want to find values of $m$ but I forgot the completing squares procedures. Can someone please describe this method for this particular equation?!
algebra-precalculus quadratics completing-the-square
$endgroup$
I have the following equation:
$$2x^2-x(5+m)+(3+m)=0.$$
I want to find values of $m$ but I forgot the completing squares procedures. Can someone please describe this method for this particular equation?!
algebra-precalculus quadratics completing-the-square
algebra-precalculus quadratics completing-the-square
edited Feb 3 at 9:07
Martin Sleziak
45k10123277
45k10123277
asked Apr 12 '12 at 13:33
Sean87Sean87
3152823
3152823
$begingroup$
Look at the second answer on this question math.stackexchange.com/questions/20597/…"
$endgroup$
– Chris K. Caldwell
Apr 12 '12 at 13:38
$begingroup$
If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
$endgroup$
– André Nicolas
Apr 12 '12 at 14:41
add a comment |
$begingroup$
Look at the second answer on this question math.stackexchange.com/questions/20597/…"
$endgroup$
– Chris K. Caldwell
Apr 12 '12 at 13:38
$begingroup$
If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
$endgroup$
– André Nicolas
Apr 12 '12 at 14:41
$begingroup$
Look at the second answer on this question math.stackexchange.com/questions/20597/…"
$endgroup$
– Chris K. Caldwell
Apr 12 '12 at 13:38
$begingroup$
Look at the second answer on this question math.stackexchange.com/questions/20597/…"
$endgroup$
– Chris K. Caldwell
Apr 12 '12 at 13:38
$begingroup$
If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
$endgroup$
– André Nicolas
Apr 12 '12 at 14:41
$begingroup$
If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
$endgroup$
– André Nicolas
Apr 12 '12 at 14:41
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
To complete the square on the left hand side of your equation, first factor out the $2$:
$$tag{1}
2x^2-x(5+m)+(3+m) =2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
$$
Write down what you want:
$$tag{2}
{x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
$$
Write the right hand side of $(2)$ as
$$tag{3}
x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
$$
Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
$$textstyle
color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
$$
Now use equations $(2)$ and $(3)$ to find the value of $k$:
$$textstyle
color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
$$
So
$$
x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
$$
and
$$eqalign{
2x^2-x(5+m)+(3+m)
&=2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
&=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
&=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
}
$$
$endgroup$
add a comment |
$begingroup$
In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$
$endgroup$
$begingroup$
Thanks, I am still confused about what to do with $m$ in my equation?
$endgroup$
– Sean87
Apr 12 '12 at 13:52
$begingroup$
actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
$endgroup$
– chemeng
Apr 12 '12 at 14:03
add a comment |
$begingroup$
$$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$
$$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$
$$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$
$$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f130865%2fcompleting-squares-what-are-the-steps-2x2-x5m3m-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To complete the square on the left hand side of your equation, first factor out the $2$:
$$tag{1}
2x^2-x(5+m)+(3+m) =2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
$$
Write down what you want:
$$tag{2}
{x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
$$
Write the right hand side of $(2)$ as
$$tag{3}
x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
$$
Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
$$textstyle
color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
$$
Now use equations $(2)$ and $(3)$ to find the value of $k$:
$$textstyle
color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
$$
So
$$
x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
$$
and
$$eqalign{
2x^2-x(5+m)+(3+m)
&=2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
&=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
&=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
}
$$
$endgroup$
add a comment |
$begingroup$
To complete the square on the left hand side of your equation, first factor out the $2$:
$$tag{1}
2x^2-x(5+m)+(3+m) =2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
$$
Write down what you want:
$$tag{2}
{x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
$$
Write the right hand side of $(2)$ as
$$tag{3}
x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
$$
Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
$$textstyle
color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
$$
Now use equations $(2)$ and $(3)$ to find the value of $k$:
$$textstyle
color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
$$
So
$$
x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
$$
and
$$eqalign{
2x^2-x(5+m)+(3+m)
&=2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
&=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
&=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
}
$$
$endgroup$
add a comment |
$begingroup$
To complete the square on the left hand side of your equation, first factor out the $2$:
$$tag{1}
2x^2-x(5+m)+(3+m) =2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
$$
Write down what you want:
$$tag{2}
{x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
$$
Write the right hand side of $(2)$ as
$$tag{3}
x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
$$
Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
$$textstyle
color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
$$
Now use equations $(2)$ and $(3)$ to find the value of $k$:
$$textstyle
color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
$$
So
$$
x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
$$
and
$$eqalign{
2x^2-x(5+m)+(3+m)
&=2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
&=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
&=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
}
$$
$endgroup$
To complete the square on the left hand side of your equation, first factor out the $2$:
$$tag{1}
2x^2-x(5+m)+(3+m) =2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr).
$$
Write down what you want:
$$tag{2}
{x^2color{maroon}{-textstyle{5+mover2} x}+textstylecolor{darkgreen}{3+mover2}} = (x-h)^2+k.
$$
Write the right hand side of $(2)$ as
$$tag{3}
x^2color{maroon}{-2 h x}+color{darkgreen}{h^2+k}.
$$
Looking at the $color{maroon}x$ term of the left hand side of $(2)$ with the $color{maroon}x$ term of $(3)$, write down an equation and solve for $h$:
$$textstyle
color{maroon}{-{5+mover 2} x} =color{maroon}{-2 hx} Longrightarrow h={5+mover 4}
$$
Now use equations $(2)$ and $(3)$ to find the value of $k$:
$$textstyle
color{darkgreen}{{3+mover2}}= color{darkgreen}{h^2+k} Longrightarrow
k={3+mover 2}-h^2 Longrightarrow k ={3+mover2}-({5+mover 4})^2
$$
So
$$
x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}}=(x-h)^2+k=
bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2
$$
and
$$eqalign{
2x^2-x(5+m)+(3+m)
&=2bigl(
{x^2-{textstyle{5+mover2}} x+{textstyle{3+mover2}} }bigr) cr
&=2Bigl(bigl( x-{textstyle {5+mover4}}bigr)^2 + {textstyle{3+mover2}-({5+mover 4}})^2 Bigr)cr
&=2bigl( x-{textstyle {5+mover4}}bigr)^2 + {3+m }-2bigl({textstyle{5+mover 4}}bigr)^2. cr
}
$$
answered Apr 12 '12 at 14:12
David MitraDavid Mitra
63.8k6102165
63.8k6102165
add a comment |
add a comment |
$begingroup$
In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$
$endgroup$
$begingroup$
Thanks, I am still confused about what to do with $m$ in my equation?
$endgroup$
– Sean87
Apr 12 '12 at 13:52
$begingroup$
actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
$endgroup$
– chemeng
Apr 12 '12 at 14:03
add a comment |
$begingroup$
In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$
$endgroup$
$begingroup$
Thanks, I am still confused about what to do with $m$ in my equation?
$endgroup$
– Sean87
Apr 12 '12 at 13:52
$begingroup$
actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
$endgroup$
– chemeng
Apr 12 '12 at 14:03
add a comment |
$begingroup$
In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$
$endgroup$
In general: $$ax^2+bx+c=a(x+frac{b}{2a})^2+c-frac{b^2}{4a}$$
answered Apr 12 '12 at 13:38
chemengchemeng
1,6831112
1,6831112
$begingroup$
Thanks, I am still confused about what to do with $m$ in my equation?
$endgroup$
– Sean87
Apr 12 '12 at 13:52
$begingroup$
actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
$endgroup$
– chemeng
Apr 12 '12 at 14:03
add a comment |
$begingroup$
Thanks, I am still confused about what to do with $m$ in my equation?
$endgroup$
– Sean87
Apr 12 '12 at 13:52
$begingroup$
actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
$endgroup$
– chemeng
Apr 12 '12 at 14:03
$begingroup$
Thanks, I am still confused about what to do with $m$ in my equation?
$endgroup$
– Sean87
Apr 12 '12 at 13:52
$begingroup$
Thanks, I am still confused about what to do with $m$ in my equation?
$endgroup$
– Sean87
Apr 12 '12 at 13:52
$begingroup$
actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
$endgroup$
– chemeng
Apr 12 '12 at 14:03
$begingroup$
actually you don't need completing squares to solve this equation. You compute the discriminant: $D=b^2-4ac=(-5-m)^2-4*2*(3+m)=m^2+2m+1=(m+1)^2 geq 0$. Therefore, the solutions of your equation are $x_{1,2}=frac{-b pm sqrt(D)}{2a}=frac{5+m pm (m+1)}{4}$
$endgroup$
– chemeng
Apr 12 '12 at 14:03
add a comment |
$begingroup$
$$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$
$$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$
$$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$
$$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$
$endgroup$
add a comment |
$begingroup$
$$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$
$$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$
$$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$
$$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$
$endgroup$
add a comment |
$begingroup$
$$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$
$$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$
$$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$
$$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$
$endgroup$
$$x^2-frac{(5+m)}{2}x+frac{3+m}{2}=0$$
$$x^2-2frac{(5+m)}{4}x+frac{3+m}{2}=0$$
$$x^2-2left(frac{5+m}{4}right)x+left(frac{5+m}{4}right)^2-left(frac{5+m}{4}right)^2+frac{3+m}{2}=0$$
$$left(x-frac{5+m}{4}right)^2-left(frac{(5+m)^2}{16}-frac{3+m}{2}right)=0$$
answered Apr 12 '12 at 14:04
Peđa TerzićPeđa Terzić
7,67922674
7,67922674
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f130865%2fcompleting-squares-what-are-the-steps-2x2-x5m3m-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Look at the second answer on this question math.stackexchange.com/questions/20597/…"
$endgroup$
– Chris K. Caldwell
Apr 12 '12 at 13:38
$begingroup$
If you are trying to solve the equation, note that by a miracle (?) the left side factors as $(x-1)(2x-(3+m))$. Or else first note that the original equation has $x=1$ as an obvious root. But you say you want to find the values of $m$. That cannot be done just given the equation. Perhaps (in a separate post) you might ask the real question.
$endgroup$
– André Nicolas
Apr 12 '12 at 14:41