Laplacian of the Euclidean Norm
$begingroup$
Let $r:mathbb{R}^n rightarrow mathbb{R}$ be defined by $r(x)=|x|,$ where $large|x|=(x_1^2+dots+x_n^2)^{frac{1}{2}}.$ Compute $nabla^2r,$ the Laplacian of $r.$
I perform the following computations,
$$largepartial_{x_i}r(x)=frac{1}{2} cdot frac{2x_i}{(x_1^2+dots+x_n^2)^{frac{1}{2}}}=frac{x_i}{r(x)},$$
so that we get
$$largepartial_{x_i}partial_{x_i}r(x)=frac{r(x)-frac{x_i^2}{r(x)}}{r(x)^2},$$
and putting these together yields
begin{align*}largenabla^2r(x)
&=largepartial_{x_1}^2r(x)+dots+partial_{x_n}^2r(x) \
&=largefrac{r(x)-x_1^2cdot r(x)^{-1}}{r(x)^2}+dots+frac{r(x)-x_n^2cdot r(x)^{-1}}{r(x)^2}\
&=largefrac{ncdot r(x)-r(x)^{-1}cdot r(x)^2}{r(x)^2}\
&=frac{n-1}{r(x)}.\
end{align*}
Is the above computation correct? I checked the calculation several times, but still have a feeling that I made a mistake somewhere
calculus multivariable-calculus partial-derivative
$endgroup$
add a comment |
$begingroup$
Let $r:mathbb{R}^n rightarrow mathbb{R}$ be defined by $r(x)=|x|,$ where $large|x|=(x_1^2+dots+x_n^2)^{frac{1}{2}}.$ Compute $nabla^2r,$ the Laplacian of $r.$
I perform the following computations,
$$largepartial_{x_i}r(x)=frac{1}{2} cdot frac{2x_i}{(x_1^2+dots+x_n^2)^{frac{1}{2}}}=frac{x_i}{r(x)},$$
so that we get
$$largepartial_{x_i}partial_{x_i}r(x)=frac{r(x)-frac{x_i^2}{r(x)}}{r(x)^2},$$
and putting these together yields
begin{align*}largenabla^2r(x)
&=largepartial_{x_1}^2r(x)+dots+partial_{x_n}^2r(x) \
&=largefrac{r(x)-x_1^2cdot r(x)^{-1}}{r(x)^2}+dots+frac{r(x)-x_n^2cdot r(x)^{-1}}{r(x)^2}\
&=largefrac{ncdot r(x)-r(x)^{-1}cdot r(x)^2}{r(x)^2}\
&=frac{n-1}{r(x)}.\
end{align*}
Is the above computation correct? I checked the calculation several times, but still have a feeling that I made a mistake somewhere
calculus multivariable-calculus partial-derivative
$endgroup$
1
$begingroup$
Looks right to me
$endgroup$
– Anthony Ter
Feb 3 at 9:50
1
$begingroup$
Take a look to this document which addresses a more general question ; it confirms your result (see the last line !) staff.science.uu.nl/~kolk0101/Books/Analysis/normlinearmap.pdf
$endgroup$
– Jean Marie
Feb 3 at 10:10
add a comment |
$begingroup$
Let $r:mathbb{R}^n rightarrow mathbb{R}$ be defined by $r(x)=|x|,$ where $large|x|=(x_1^2+dots+x_n^2)^{frac{1}{2}}.$ Compute $nabla^2r,$ the Laplacian of $r.$
I perform the following computations,
$$largepartial_{x_i}r(x)=frac{1}{2} cdot frac{2x_i}{(x_1^2+dots+x_n^2)^{frac{1}{2}}}=frac{x_i}{r(x)},$$
so that we get
$$largepartial_{x_i}partial_{x_i}r(x)=frac{r(x)-frac{x_i^2}{r(x)}}{r(x)^2},$$
and putting these together yields
begin{align*}largenabla^2r(x)
&=largepartial_{x_1}^2r(x)+dots+partial_{x_n}^2r(x) \
&=largefrac{r(x)-x_1^2cdot r(x)^{-1}}{r(x)^2}+dots+frac{r(x)-x_n^2cdot r(x)^{-1}}{r(x)^2}\
&=largefrac{ncdot r(x)-r(x)^{-1}cdot r(x)^2}{r(x)^2}\
&=frac{n-1}{r(x)}.\
end{align*}
Is the above computation correct? I checked the calculation several times, but still have a feeling that I made a mistake somewhere
calculus multivariable-calculus partial-derivative
$endgroup$
Let $r:mathbb{R}^n rightarrow mathbb{R}$ be defined by $r(x)=|x|,$ where $large|x|=(x_1^2+dots+x_n^2)^{frac{1}{2}}.$ Compute $nabla^2r,$ the Laplacian of $r.$
I perform the following computations,
$$largepartial_{x_i}r(x)=frac{1}{2} cdot frac{2x_i}{(x_1^2+dots+x_n^2)^{frac{1}{2}}}=frac{x_i}{r(x)},$$
so that we get
$$largepartial_{x_i}partial_{x_i}r(x)=frac{r(x)-frac{x_i^2}{r(x)}}{r(x)^2},$$
and putting these together yields
begin{align*}largenabla^2r(x)
&=largepartial_{x_1}^2r(x)+dots+partial_{x_n}^2r(x) \
&=largefrac{r(x)-x_1^2cdot r(x)^{-1}}{r(x)^2}+dots+frac{r(x)-x_n^2cdot r(x)^{-1}}{r(x)^2}\
&=largefrac{ncdot r(x)-r(x)^{-1}cdot r(x)^2}{r(x)^2}\
&=frac{n-1}{r(x)}.\
end{align*}
Is the above computation correct? I checked the calculation several times, but still have a feeling that I made a mistake somewhere
calculus multivariable-calculus partial-derivative
calculus multivariable-calculus partial-derivative
edited Feb 3 at 10:11
Jean Marie
31.5k42355
31.5k42355
asked Feb 3 at 9:33
Gaby AlfonsoGaby Alfonso
1,2051418
1,2051418
1
$begingroup$
Looks right to me
$endgroup$
– Anthony Ter
Feb 3 at 9:50
1
$begingroup$
Take a look to this document which addresses a more general question ; it confirms your result (see the last line !) staff.science.uu.nl/~kolk0101/Books/Analysis/normlinearmap.pdf
$endgroup$
– Jean Marie
Feb 3 at 10:10
add a comment |
1
$begingroup$
Looks right to me
$endgroup$
– Anthony Ter
Feb 3 at 9:50
1
$begingroup$
Take a look to this document which addresses a more general question ; it confirms your result (see the last line !) staff.science.uu.nl/~kolk0101/Books/Analysis/normlinearmap.pdf
$endgroup$
– Jean Marie
Feb 3 at 10:10
1
1
$begingroup$
Looks right to me
$endgroup$
– Anthony Ter
Feb 3 at 9:50
$begingroup$
Looks right to me
$endgroup$
– Anthony Ter
Feb 3 at 9:50
1
1
$begingroup$
Take a look to this document which addresses a more general question ; it confirms your result (see the last line !) staff.science.uu.nl/~kolk0101/Books/Analysis/normlinearmap.pdf
$endgroup$
– Jean Marie
Feb 3 at 10:10
$begingroup$
Take a look to this document which addresses a more general question ; it confirms your result (see the last line !) staff.science.uu.nl/~kolk0101/Books/Analysis/normlinearmap.pdf
$endgroup$
– Jean Marie
Feb 3 at 10:10
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $u(x)=v(|x|)$ then
$$Delta u=frac{n-1}{|x|}v'(|x|)+v''(|x|).$$
See, for example https://web.stanford.edu/class/math220b/handouts/laplace.pdf
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098355%2flaplacian-of-the-euclidean-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $u(x)=v(|x|)$ then
$$Delta u=frac{n-1}{|x|}v'(|x|)+v''(|x|).$$
See, for example https://web.stanford.edu/class/math220b/handouts/laplace.pdf
$endgroup$
add a comment |
$begingroup$
If $u(x)=v(|x|)$ then
$$Delta u=frac{n-1}{|x|}v'(|x|)+v''(|x|).$$
See, for example https://web.stanford.edu/class/math220b/handouts/laplace.pdf
$endgroup$
add a comment |
$begingroup$
If $u(x)=v(|x|)$ then
$$Delta u=frac{n-1}{|x|}v'(|x|)+v''(|x|).$$
See, for example https://web.stanford.edu/class/math220b/handouts/laplace.pdf
$endgroup$
If $u(x)=v(|x|)$ then
$$Delta u=frac{n-1}{|x|}v'(|x|)+v''(|x|).$$
See, for example https://web.stanford.edu/class/math220b/handouts/laplace.pdf
answered Feb 3 at 11:08
Aleksas DomarkasAleksas Domarkas
1,62317
1,62317
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098355%2flaplacian-of-the-euclidean-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Looks right to me
$endgroup$
– Anthony Ter
Feb 3 at 9:50
1
$begingroup$
Take a look to this document which addresses a more general question ; it confirms your result (see the last line !) staff.science.uu.nl/~kolk0101/Books/Analysis/normlinearmap.pdf
$endgroup$
– Jean Marie
Feb 3 at 10:10