$ tx''+ x' - tx + f(t) = 0 $ with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$












1












$begingroup$


A solution of this ODE is $displaystyleint_0^{pi/2}sec{(theta)}e^{-tsec{(theta)}}dtheta$ and I don't know how to start with the following ODE:
$$ tx''+ x' - tx + f(t) = 0 $$
with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$. Is this ODE possible to solve it?





Note: I don't know what is the value of $displaystylelim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$, I am going to change this for the value when I know it.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
    $endgroup$
    – Christoph
    Feb 3 at 9:20


















1












$begingroup$


A solution of this ODE is $displaystyleint_0^{pi/2}sec{(theta)}e^{-tsec{(theta)}}dtheta$ and I don't know how to start with the following ODE:
$$ tx''+ x' - tx + f(t) = 0 $$
with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$. Is this ODE possible to solve it?





Note: I don't know what is the value of $displaystylelim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$, I am going to change this for the value when I know it.










share|cite|improve this question









$endgroup$












  • $begingroup$
    The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
    $endgroup$
    – Christoph
    Feb 3 at 9:20
















1












1








1





$begingroup$


A solution of this ODE is $displaystyleint_0^{pi/2}sec{(theta)}e^{-tsec{(theta)}}dtheta$ and I don't know how to start with the following ODE:
$$ tx''+ x' - tx + f(t) = 0 $$
with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$. Is this ODE possible to solve it?





Note: I don't know what is the value of $displaystylelim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$, I am going to change this for the value when I know it.










share|cite|improve this question









$endgroup$




A solution of this ODE is $displaystyleint_0^{pi/2}sec{(theta)}e^{-tsec{(theta)}}dtheta$ and I don't know how to start with the following ODE:
$$ tx''+ x' - tx + f(t) = 0 $$
with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$. Is this ODE possible to solve it?





Note: I don't know what is the value of $displaystylelim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$, I am going to change this for the value when I know it.







ordinary-differential-equations limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 3 at 8:50









El boritoEl borito

664216




664216












  • $begingroup$
    The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
    $endgroup$
    – Christoph
    Feb 3 at 9:20




















  • $begingroup$
    The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
    $endgroup$
    – Christoph
    Feb 3 at 9:20


















$begingroup$
The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
$endgroup$
– Christoph
Feb 3 at 9:20






$begingroup$
The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
$endgroup$
– Christoph
Feb 3 at 9:20












1 Answer
1






active

oldest

votes


















3












$begingroup$

$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$



Thus the case $tleq 0$ is excluded.



$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This is a very interesant answer, thank you!!
    $endgroup$
    – El borito
    Feb 4 at 4:58












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098330%2ftx-x-tx-ft-0-with-displaystyle-ft-lim-theta-to-pi-2-bi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$



Thus the case $tleq 0$ is excluded.



$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This is a very interesant answer, thank you!!
    $endgroup$
    – El borito
    Feb 4 at 4:58
















3












$begingroup$

$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$



Thus the case $tleq 0$ is excluded.



$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    This is a very interesant answer, thank you!!
    $endgroup$
    – El borito
    Feb 4 at 4:58














3












3








3





$begingroup$

$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$



Thus the case $tleq 0$ is excluded.



$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.






share|cite|improve this answer









$endgroup$



$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$



Thus the case $tleq 0$ is excluded.



$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Feb 3 at 10:16









JJacquelinJJacquelin

45.7k21858




45.7k21858












  • $begingroup$
    This is a very interesant answer, thank you!!
    $endgroup$
    – El borito
    Feb 4 at 4:58


















  • $begingroup$
    This is a very interesant answer, thank you!!
    $endgroup$
    – El borito
    Feb 4 at 4:58
















$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58




$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098330%2ftx-x-tx-ft-0-with-displaystyle-ft-lim-theta-to-pi-2-bi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$