$ tx''+ x' - tx + f(t) = 0 $ with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$
$begingroup$
A solution of this ODE is $displaystyleint_0^{pi/2}sec{(theta)}e^{-tsec{(theta)}}dtheta$ and I don't know how to start with the following ODE:
$$ tx''+ x' - tx + f(t) = 0 $$
with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$. Is this ODE possible to solve it?
Note: I don't know what is the value of $displaystylelim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$, I am going to change this for the value when I know it.
ordinary-differential-equations limits
$endgroup$
add a comment |
$begingroup$
A solution of this ODE is $displaystyleint_0^{pi/2}sec{(theta)}e^{-tsec{(theta)}}dtheta$ and I don't know how to start with the following ODE:
$$ tx''+ x' - tx + f(t) = 0 $$
with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$. Is this ODE possible to solve it?
Note: I don't know what is the value of $displaystylelim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$, I am going to change this for the value when I know it.
ordinary-differential-equations limits
$endgroup$
$begingroup$
The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
$endgroup$
– Christoph
Feb 3 at 9:20
add a comment |
$begingroup$
A solution of this ODE is $displaystyleint_0^{pi/2}sec{(theta)}e^{-tsec{(theta)}}dtheta$ and I don't know how to start with the following ODE:
$$ tx''+ x' - tx + f(t) = 0 $$
with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$. Is this ODE possible to solve it?
Note: I don't know what is the value of $displaystylelim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$, I am going to change this for the value when I know it.
ordinary-differential-equations limits
$endgroup$
A solution of this ODE is $displaystyleint_0^{pi/2}sec{(theta)}e^{-tsec{(theta)}}dtheta$ and I don't know how to start with the following ODE:
$$ tx''+ x' - tx + f(t) = 0 $$
with $displaystyle f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$. Is this ODE possible to solve it?
Note: I don't know what is the value of $displaystylelim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big)$, I am going to change this for the value when I know it.
ordinary-differential-equations limits
ordinary-differential-equations limits
asked Feb 3 at 8:50
El boritoEl borito
664216
664216
$begingroup$
The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
$endgroup$
– Christoph
Feb 3 at 9:20
add a comment |
$begingroup$
The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
$endgroup$
– Christoph
Feb 3 at 9:20
$begingroup$
The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
$endgroup$
– Christoph
Feb 3 at 9:20
$begingroup$
The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
$endgroup$
– Christoph
Feb 3 at 9:20
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$
Thus the case $tleq 0$ is excluded.
$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.
$endgroup$
$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098330%2ftx-x-tx-ft-0-with-displaystyle-ft-lim-theta-to-pi-2-bi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$
Thus the case $tleq 0$ is excluded.
$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.
$endgroup$
$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58
add a comment |
$begingroup$
$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$
Thus the case $tleq 0$ is excluded.
$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.
$endgroup$
$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58
add a comment |
$begingroup$
$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$
Thus the case $tleq 0$ is excluded.
$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.
$endgroup$
$$e^{-tsec(theta)}tan(theta)=e^{-t/sin(epsilon)}frac{cos(epsilon)}{sin(epsilon)}quad;quad theta=frac{pi}{2}-epsilon$$
$thetato(pi/2)^- quad;quad epsilon>0to 0^+$
$$e^{-tsec(theta)}tan(theta)sim frac{e^{-t/epsilon}}{epsilon}$$
$f(t)=lim_{thetatopi/2^-}Big(e^{-t(sec{theta})}tan{theta}Big) =
begin{cases}
0qquad text{if}quad t>0 \
inftyqquad text{if}quad tleq 0
end{cases}$
Thus the case $tleq 0$ is excluded.
$$tx''+x'-tx=0qquad t>0$$
This is an ODE of Bessel kind.
$$x(t)=c_1I_0(t)+c_2K_0(t)$$
Modified Bessel function of first and second kind.
answered Feb 3 at 10:16
JJacquelinJJacquelin
45.7k21858
45.7k21858
$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58
add a comment |
$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58
$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58
$begingroup$
This is a very interesant answer, thank you!!
$endgroup$
– El borito
Feb 4 at 4:58
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098330%2ftx-x-tx-ft-0-with-displaystyle-ft-lim-theta-to-pi-2-bi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The homogeneous linear ODE $tx_0'' + x_0' - tx_0 = 0$ can be written as the modified Bessel's equation by multiplying by $t$: $t^2 x_0'' + t x_0' - t^2 x_0 = 0$. Thus the general solution is $x_0(t) = C_1 I_0(t) + C_2 K_0(t)$, with the zeroth-order modified Bessel functions $I_0, K_0$.
$endgroup$
– Christoph
Feb 3 at 9:20