Convergence to normal distribution without i.i.d.
Suppose that $X_n$ are independent and $mathbb{P}(X_m = m) = mathbb{P}(X_m=-m) = frac{1}{2m^2}$ and for $mgeq 2$
begin{equation*}
mathbb{P}(X_m = 1) = mathbb{P}(X_m=-1) = frac{1-m^{-2}}{2}.
end{equation*}
It is easy to see $frac{mathrm{Var}(S_n)}{n} longrightarrow 2$ but I cannot prove $frac{S_n}{sqrt{n}} Longrightarrow mathcal{N}(0,1)$. Clearly the assumptions of Feller-Lindeberg theorem doesn't hold.
probability probability-theory probability-distributions normal-distribution
add a comment |
Suppose that $X_n$ are independent and $mathbb{P}(X_m = m) = mathbb{P}(X_m=-m) = frac{1}{2m^2}$ and for $mgeq 2$
begin{equation*}
mathbb{P}(X_m = 1) = mathbb{P}(X_m=-1) = frac{1-m^{-2}}{2}.
end{equation*}
It is easy to see $frac{mathrm{Var}(S_n)}{n} longrightarrow 2$ but I cannot prove $frac{S_n}{sqrt{n}} Longrightarrow mathcal{N}(0,1)$. Clearly the assumptions of Feller-Lindeberg theorem doesn't hold.
probability probability-theory probability-distributions normal-distribution
You've defined $X_n$ but you've not defined $S_n$.
– heropup
Nov 21 '18 at 7:33
add a comment |
Suppose that $X_n$ are independent and $mathbb{P}(X_m = m) = mathbb{P}(X_m=-m) = frac{1}{2m^2}$ and for $mgeq 2$
begin{equation*}
mathbb{P}(X_m = 1) = mathbb{P}(X_m=-1) = frac{1-m^{-2}}{2}.
end{equation*}
It is easy to see $frac{mathrm{Var}(S_n)}{n} longrightarrow 2$ but I cannot prove $frac{S_n}{sqrt{n}} Longrightarrow mathcal{N}(0,1)$. Clearly the assumptions of Feller-Lindeberg theorem doesn't hold.
probability probability-theory probability-distributions normal-distribution
Suppose that $X_n$ are independent and $mathbb{P}(X_m = m) = mathbb{P}(X_m=-m) = frac{1}{2m^2}$ and for $mgeq 2$
begin{equation*}
mathbb{P}(X_m = 1) = mathbb{P}(X_m=-1) = frac{1-m^{-2}}{2}.
end{equation*}
It is easy to see $frac{mathrm{Var}(S_n)}{n} longrightarrow 2$ but I cannot prove $frac{S_n}{sqrt{n}} Longrightarrow mathcal{N}(0,1)$. Clearly the assumptions of Feller-Lindeberg theorem doesn't hold.
probability probability-theory probability-distributions normal-distribution
probability probability-theory probability-distributions normal-distribution
asked Nov 21 '18 at 7:11


Sean
527513
527513
You've defined $X_n$ but you've not defined $S_n$.
– heropup
Nov 21 '18 at 7:33
add a comment |
You've defined $X_n$ but you've not defined $S_n$.
– heropup
Nov 21 '18 at 7:33
You've defined $X_n$ but you've not defined $S_n$.
– heropup
Nov 21 '18 at 7:33
You've defined $X_n$ but you've not defined $S_n$.
– heropup
Nov 21 '18 at 7:33
add a comment |
1 Answer
1
active
oldest
votes
Set $Z_m = X_{m} 1_{{|X_m| le 1}} + 1_{{X_m>1}}-1_{{X_m<-1}}$. Then $(Z_i)_{i in mathbb{N}}$ is a sequence of i.i.d. random variables with $mathbb{E}(Z_i) =0$ and $mathrm{Var}(Z_i) =1$. Thus, we can conclude by the central limit law that
$$frac{1}{sqrt{n}}sum_{k=1}^n Z_k Rightarrow mathcal{N}(0,1).$$
Let $S_n^{(1)} := sum_{k=1}^n Z_k$ and $S_n^{(2)}: = sum_{k=1}^n R_k$ with $R_k = X_k - Z_k = X_m 1_{{|X_m|>1}}+(1_{{X_m<-1}}-1_{{X_m>1}})$. If we can show that $(sqrt{n})^{-1} S_n^{(2)} rightarrow 0$ e.g. in $L^1$, then this already implies convergence in distribution. By Slutsky's theorem we can can could that
$$frac{1}{sqrt{n}} sum_{k=1}^n X_k = frac{1}{sqrt{n}} S_n^{(1)} + frac{1}{sqrt{n}} S_n^{(2)} Rightarrow mathcal{N}(0,1)+0 =mathcal{N}(0,1).$$
It remains to show that $(sqrt{n})^{-1}mathbb{E}[|S_n^{(2)}|] rightarrow 0$. In fact, we have
begin{align}
frac{1}{sqrt{n}} mathbb{E}| S_n^{(2)} | &le frac{1}{sqrt{n}} sum_{k=1}^n mathbb{E}(1+|X_m|) 1_{{|X_m|>1}} le frac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} \
& lefrac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} lefrac{2}{sqrt{n}} sum_{k=1}^n frac{1}{k} ll frac{log(n)}{sqrt{n}},
end{align}
where the last step can be established by using an integral comparison argument. (The sum is at most $1+int_1^{n} frac{1}{x} , d x$.)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007371%2fconvergence-to-normal-distribution-without-i-i-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Set $Z_m = X_{m} 1_{{|X_m| le 1}} + 1_{{X_m>1}}-1_{{X_m<-1}}$. Then $(Z_i)_{i in mathbb{N}}$ is a sequence of i.i.d. random variables with $mathbb{E}(Z_i) =0$ and $mathrm{Var}(Z_i) =1$. Thus, we can conclude by the central limit law that
$$frac{1}{sqrt{n}}sum_{k=1}^n Z_k Rightarrow mathcal{N}(0,1).$$
Let $S_n^{(1)} := sum_{k=1}^n Z_k$ and $S_n^{(2)}: = sum_{k=1}^n R_k$ with $R_k = X_k - Z_k = X_m 1_{{|X_m|>1}}+(1_{{X_m<-1}}-1_{{X_m>1}})$. If we can show that $(sqrt{n})^{-1} S_n^{(2)} rightarrow 0$ e.g. in $L^1$, then this already implies convergence in distribution. By Slutsky's theorem we can can could that
$$frac{1}{sqrt{n}} sum_{k=1}^n X_k = frac{1}{sqrt{n}} S_n^{(1)} + frac{1}{sqrt{n}} S_n^{(2)} Rightarrow mathcal{N}(0,1)+0 =mathcal{N}(0,1).$$
It remains to show that $(sqrt{n})^{-1}mathbb{E}[|S_n^{(2)}|] rightarrow 0$. In fact, we have
begin{align}
frac{1}{sqrt{n}} mathbb{E}| S_n^{(2)} | &le frac{1}{sqrt{n}} sum_{k=1}^n mathbb{E}(1+|X_m|) 1_{{|X_m|>1}} le frac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} \
& lefrac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} lefrac{2}{sqrt{n}} sum_{k=1}^n frac{1}{k} ll frac{log(n)}{sqrt{n}},
end{align}
where the last step can be established by using an integral comparison argument. (The sum is at most $1+int_1^{n} frac{1}{x} , d x$.)
add a comment |
Set $Z_m = X_{m} 1_{{|X_m| le 1}} + 1_{{X_m>1}}-1_{{X_m<-1}}$. Then $(Z_i)_{i in mathbb{N}}$ is a sequence of i.i.d. random variables with $mathbb{E}(Z_i) =0$ and $mathrm{Var}(Z_i) =1$. Thus, we can conclude by the central limit law that
$$frac{1}{sqrt{n}}sum_{k=1}^n Z_k Rightarrow mathcal{N}(0,1).$$
Let $S_n^{(1)} := sum_{k=1}^n Z_k$ and $S_n^{(2)}: = sum_{k=1}^n R_k$ with $R_k = X_k - Z_k = X_m 1_{{|X_m|>1}}+(1_{{X_m<-1}}-1_{{X_m>1}})$. If we can show that $(sqrt{n})^{-1} S_n^{(2)} rightarrow 0$ e.g. in $L^1$, then this already implies convergence in distribution. By Slutsky's theorem we can can could that
$$frac{1}{sqrt{n}} sum_{k=1}^n X_k = frac{1}{sqrt{n}} S_n^{(1)} + frac{1}{sqrt{n}} S_n^{(2)} Rightarrow mathcal{N}(0,1)+0 =mathcal{N}(0,1).$$
It remains to show that $(sqrt{n})^{-1}mathbb{E}[|S_n^{(2)}|] rightarrow 0$. In fact, we have
begin{align}
frac{1}{sqrt{n}} mathbb{E}| S_n^{(2)} | &le frac{1}{sqrt{n}} sum_{k=1}^n mathbb{E}(1+|X_m|) 1_{{|X_m|>1}} le frac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} \
& lefrac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} lefrac{2}{sqrt{n}} sum_{k=1}^n frac{1}{k} ll frac{log(n)}{sqrt{n}},
end{align}
where the last step can be established by using an integral comparison argument. (The sum is at most $1+int_1^{n} frac{1}{x} , d x$.)
add a comment |
Set $Z_m = X_{m} 1_{{|X_m| le 1}} + 1_{{X_m>1}}-1_{{X_m<-1}}$. Then $(Z_i)_{i in mathbb{N}}$ is a sequence of i.i.d. random variables with $mathbb{E}(Z_i) =0$ and $mathrm{Var}(Z_i) =1$. Thus, we can conclude by the central limit law that
$$frac{1}{sqrt{n}}sum_{k=1}^n Z_k Rightarrow mathcal{N}(0,1).$$
Let $S_n^{(1)} := sum_{k=1}^n Z_k$ and $S_n^{(2)}: = sum_{k=1}^n R_k$ with $R_k = X_k - Z_k = X_m 1_{{|X_m|>1}}+(1_{{X_m<-1}}-1_{{X_m>1}})$. If we can show that $(sqrt{n})^{-1} S_n^{(2)} rightarrow 0$ e.g. in $L^1$, then this already implies convergence in distribution. By Slutsky's theorem we can can could that
$$frac{1}{sqrt{n}} sum_{k=1}^n X_k = frac{1}{sqrt{n}} S_n^{(1)} + frac{1}{sqrt{n}} S_n^{(2)} Rightarrow mathcal{N}(0,1)+0 =mathcal{N}(0,1).$$
It remains to show that $(sqrt{n})^{-1}mathbb{E}[|S_n^{(2)}|] rightarrow 0$. In fact, we have
begin{align}
frac{1}{sqrt{n}} mathbb{E}| S_n^{(2)} | &le frac{1}{sqrt{n}} sum_{k=1}^n mathbb{E}(1+|X_m|) 1_{{|X_m|>1}} le frac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} \
& lefrac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} lefrac{2}{sqrt{n}} sum_{k=1}^n frac{1}{k} ll frac{log(n)}{sqrt{n}},
end{align}
where the last step can be established by using an integral comparison argument. (The sum is at most $1+int_1^{n} frac{1}{x} , d x$.)
Set $Z_m = X_{m} 1_{{|X_m| le 1}} + 1_{{X_m>1}}-1_{{X_m<-1}}$. Then $(Z_i)_{i in mathbb{N}}$ is a sequence of i.i.d. random variables with $mathbb{E}(Z_i) =0$ and $mathrm{Var}(Z_i) =1$. Thus, we can conclude by the central limit law that
$$frac{1}{sqrt{n}}sum_{k=1}^n Z_k Rightarrow mathcal{N}(0,1).$$
Let $S_n^{(1)} := sum_{k=1}^n Z_k$ and $S_n^{(2)}: = sum_{k=1}^n R_k$ with $R_k = X_k - Z_k = X_m 1_{{|X_m|>1}}+(1_{{X_m<-1}}-1_{{X_m>1}})$. If we can show that $(sqrt{n})^{-1} S_n^{(2)} rightarrow 0$ e.g. in $L^1$, then this already implies convergence in distribution. By Slutsky's theorem we can can could that
$$frac{1}{sqrt{n}} sum_{k=1}^n X_k = frac{1}{sqrt{n}} S_n^{(1)} + frac{1}{sqrt{n}} S_n^{(2)} Rightarrow mathcal{N}(0,1)+0 =mathcal{N}(0,1).$$
It remains to show that $(sqrt{n})^{-1}mathbb{E}[|S_n^{(2)}|] rightarrow 0$. In fact, we have
begin{align}
frac{1}{sqrt{n}} mathbb{E}| S_n^{(2)} | &le frac{1}{sqrt{n}} sum_{k=1}^n mathbb{E}(1+|X_m|) 1_{{|X_m|>1}} le frac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} \
& lefrac{2}{sqrt{n}} sum_{k=1}^n mathbb{E}|X_m| 1_{{|X_m|>1}} lefrac{2}{sqrt{n}} sum_{k=1}^n frac{1}{k} ll frac{log(n)}{sqrt{n}},
end{align}
where the last step can be established by using an integral comparison argument. (The sum is at most $1+int_1^{n} frac{1}{x} , d x$.)
answered Nov 21 '18 at 7:36
p4sch
4,770217
4,770217
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007371%2fconvergence-to-normal-distribution-without-i-i-d%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You've defined $X_n$ but you've not defined $S_n$.
– heropup
Nov 21 '18 at 7:33