Equiintegrability of some family of sequences
$begingroup$
Let $(rho_n)_nsubset L^1$ be a Dirac sequence. Study the equiintegrability of the following family:
(a) $f_n=rho_n^2$,
(b) $g_n=rho_1*rho_n$ (convolution),
(c) $g_n=rho_1*rho_n^2$.
My attempt
Since for any $epsilon>0$ we have $int_{|x|<epsilon}|rho_n(x)|dxrightarrow 1$, $(rho_n)_n$ is not equiintegrable.
(b) Let $epsilon>0$. Choose $delta$ such that $m(A)leq delta$ implies $int_A|rho_1(x)|dx<epsilon$. Then
begin{align*} int_A|g_n(x)|dx&=int_A|rho_1*rho_n|dx\
&=int_Aint_{mathbb{R}}|rho_1(x-y)| |rho_n(y)|dydx\
&=int_{mathbb{R}} |rho_n(y)|left(int_A|rho_1(x-y)|dxright)dy\
&leq epsilon int_{mathbb{R}} |rho_n(y)|dy=epsilon.
end{align*}
Hence, the family $(g_n)_n$ is equiintegrable.
(a) I suspect its not equintegrable but I do not know what procee.
begin{align*} int_A|f_n(x)|dx&=int_A|rho_n^2|dx.
end{align*}
I hope to get this kind of inequality
begin{align*} int_A|rho_n^2|dx&leqint_A|rho_n|dx int_A|rho_n|dx.
end{align*}
functional-analysis measure-theory convergence lebesgue-integral lp-spaces
$endgroup$
add a comment |
$begingroup$
Let $(rho_n)_nsubset L^1$ be a Dirac sequence. Study the equiintegrability of the following family:
(a) $f_n=rho_n^2$,
(b) $g_n=rho_1*rho_n$ (convolution),
(c) $g_n=rho_1*rho_n^2$.
My attempt
Since for any $epsilon>0$ we have $int_{|x|<epsilon}|rho_n(x)|dxrightarrow 1$, $(rho_n)_n$ is not equiintegrable.
(b) Let $epsilon>0$. Choose $delta$ such that $m(A)leq delta$ implies $int_A|rho_1(x)|dx<epsilon$. Then
begin{align*} int_A|g_n(x)|dx&=int_A|rho_1*rho_n|dx\
&=int_Aint_{mathbb{R}}|rho_1(x-y)| |rho_n(y)|dydx\
&=int_{mathbb{R}} |rho_n(y)|left(int_A|rho_1(x-y)|dxright)dy\
&leq epsilon int_{mathbb{R}} |rho_n(y)|dy=epsilon.
end{align*}
Hence, the family $(g_n)_n$ is equiintegrable.
(a) I suspect its not equintegrable but I do not know what procee.
begin{align*} int_A|f_n(x)|dx&=int_A|rho_n^2|dx.
end{align*}
I hope to get this kind of inequality
begin{align*} int_A|rho_n^2|dx&leqint_A|rho_n|dx int_A|rho_n|dx.
end{align*}
functional-analysis measure-theory convergence lebesgue-integral lp-spaces
$endgroup$
$begingroup$
What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
$endgroup$
– Will M.
Jan 31 at 18:07
$begingroup$
A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
$endgroup$
– Muhammad Mubarak
Jan 31 at 18:29
add a comment |
$begingroup$
Let $(rho_n)_nsubset L^1$ be a Dirac sequence. Study the equiintegrability of the following family:
(a) $f_n=rho_n^2$,
(b) $g_n=rho_1*rho_n$ (convolution),
(c) $g_n=rho_1*rho_n^2$.
My attempt
Since for any $epsilon>0$ we have $int_{|x|<epsilon}|rho_n(x)|dxrightarrow 1$, $(rho_n)_n$ is not equiintegrable.
(b) Let $epsilon>0$. Choose $delta$ such that $m(A)leq delta$ implies $int_A|rho_1(x)|dx<epsilon$. Then
begin{align*} int_A|g_n(x)|dx&=int_A|rho_1*rho_n|dx\
&=int_Aint_{mathbb{R}}|rho_1(x-y)| |rho_n(y)|dydx\
&=int_{mathbb{R}} |rho_n(y)|left(int_A|rho_1(x-y)|dxright)dy\
&leq epsilon int_{mathbb{R}} |rho_n(y)|dy=epsilon.
end{align*}
Hence, the family $(g_n)_n$ is equiintegrable.
(a) I suspect its not equintegrable but I do not know what procee.
begin{align*} int_A|f_n(x)|dx&=int_A|rho_n^2|dx.
end{align*}
I hope to get this kind of inequality
begin{align*} int_A|rho_n^2|dx&leqint_A|rho_n|dx int_A|rho_n|dx.
end{align*}
functional-analysis measure-theory convergence lebesgue-integral lp-spaces
$endgroup$
Let $(rho_n)_nsubset L^1$ be a Dirac sequence. Study the equiintegrability of the following family:
(a) $f_n=rho_n^2$,
(b) $g_n=rho_1*rho_n$ (convolution),
(c) $g_n=rho_1*rho_n^2$.
My attempt
Since for any $epsilon>0$ we have $int_{|x|<epsilon}|rho_n(x)|dxrightarrow 1$, $(rho_n)_n$ is not equiintegrable.
(b) Let $epsilon>0$. Choose $delta$ such that $m(A)leq delta$ implies $int_A|rho_1(x)|dx<epsilon$. Then
begin{align*} int_A|g_n(x)|dx&=int_A|rho_1*rho_n|dx\
&=int_Aint_{mathbb{R}}|rho_1(x-y)| |rho_n(y)|dydx\
&=int_{mathbb{R}} |rho_n(y)|left(int_A|rho_1(x-y)|dxright)dy\
&leq epsilon int_{mathbb{R}} |rho_n(y)|dy=epsilon.
end{align*}
Hence, the family $(g_n)_n$ is equiintegrable.
(a) I suspect its not equintegrable but I do not know what procee.
begin{align*} int_A|f_n(x)|dx&=int_A|rho_n^2|dx.
end{align*}
I hope to get this kind of inequality
begin{align*} int_A|rho_n^2|dx&leqint_A|rho_n|dx int_A|rho_n|dx.
end{align*}
functional-analysis measure-theory convergence lebesgue-integral lp-spaces
functional-analysis measure-theory convergence lebesgue-integral lp-spaces
edited Jan 31 at 18:30
Muhammad Mubarak
asked Jan 31 at 15:47
Muhammad MubarakMuhammad Mubarak
9810
9810
$begingroup$
What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
$endgroup$
– Will M.
Jan 31 at 18:07
$begingroup$
A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
$endgroup$
– Muhammad Mubarak
Jan 31 at 18:29
add a comment |
$begingroup$
What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
$endgroup$
– Will M.
Jan 31 at 18:07
$begingroup$
A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
$endgroup$
– Muhammad Mubarak
Jan 31 at 18:29
$begingroup$
What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
$endgroup$
– Will M.
Jan 31 at 18:07
$begingroup$
What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
$endgroup$
– Will M.
Jan 31 at 18:07
$begingroup$
A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
$endgroup$
– Muhammad Mubarak
Jan 31 at 18:29
$begingroup$
A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
$endgroup$
– Muhammad Mubarak
Jan 31 at 18:29
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095040%2fequiintegrability-of-some-family-of-sequences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095040%2fequiintegrability-of-some-family-of-sequences%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
$endgroup$
– Will M.
Jan 31 at 18:07
$begingroup$
A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
$endgroup$
– Muhammad Mubarak
Jan 31 at 18:29