Equiintegrability of some family of sequences












1












$begingroup$


Let $(rho_n)_nsubset L^1$ be a Dirac sequence. Study the equiintegrability of the following family:



(a) $f_n=rho_n^2$,



(b) $g_n=rho_1*rho_n$ (convolution),



(c) $g_n=rho_1*rho_n^2$.



My attempt



Since for any $epsilon>0$ we have $int_{|x|<epsilon}|rho_n(x)|dxrightarrow 1$, $(rho_n)_n$ is not equiintegrable.



(b) Let $epsilon>0$. Choose $delta$ such that $m(A)leq delta$ implies $int_A|rho_1(x)|dx<epsilon$. Then
begin{align*} int_A|g_n(x)|dx&=int_A|rho_1*rho_n|dx\
&=int_Aint_{mathbb{R}}|rho_1(x-y)| |rho_n(y)|dydx\
&=int_{mathbb{R}} |rho_n(y)|left(int_A|rho_1(x-y)|dxright)dy\
&leq epsilon int_{mathbb{R}} |rho_n(y)|dy=epsilon.
end{align*}

Hence, the family $(g_n)_n$ is equiintegrable.



(a) I suspect its not equintegrable but I do not know what procee.
begin{align*} int_A|f_n(x)|dx&=int_A|rho_n^2|dx.
end{align*}

I hope to get this kind of inequality
begin{align*} int_A|rho_n^2|dx&leqint_A|rho_n|dx int_A|rho_n|dx.
end{align*}










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
    $endgroup$
    – Will M.
    Jan 31 at 18:07










  • $begingroup$
    A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
    $endgroup$
    – Muhammad Mubarak
    Jan 31 at 18:29
















1












$begingroup$


Let $(rho_n)_nsubset L^1$ be a Dirac sequence. Study the equiintegrability of the following family:



(a) $f_n=rho_n^2$,



(b) $g_n=rho_1*rho_n$ (convolution),



(c) $g_n=rho_1*rho_n^2$.



My attempt



Since for any $epsilon>0$ we have $int_{|x|<epsilon}|rho_n(x)|dxrightarrow 1$, $(rho_n)_n$ is not equiintegrable.



(b) Let $epsilon>0$. Choose $delta$ such that $m(A)leq delta$ implies $int_A|rho_1(x)|dx<epsilon$. Then
begin{align*} int_A|g_n(x)|dx&=int_A|rho_1*rho_n|dx\
&=int_Aint_{mathbb{R}}|rho_1(x-y)| |rho_n(y)|dydx\
&=int_{mathbb{R}} |rho_n(y)|left(int_A|rho_1(x-y)|dxright)dy\
&leq epsilon int_{mathbb{R}} |rho_n(y)|dy=epsilon.
end{align*}

Hence, the family $(g_n)_n$ is equiintegrable.



(a) I suspect its not equintegrable but I do not know what procee.
begin{align*} int_A|f_n(x)|dx&=int_A|rho_n^2|dx.
end{align*}

I hope to get this kind of inequality
begin{align*} int_A|rho_n^2|dx&leqint_A|rho_n|dx int_A|rho_n|dx.
end{align*}










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
    $endgroup$
    – Will M.
    Jan 31 at 18:07










  • $begingroup$
    A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
    $endgroup$
    – Muhammad Mubarak
    Jan 31 at 18:29














1












1








1





$begingroup$


Let $(rho_n)_nsubset L^1$ be a Dirac sequence. Study the equiintegrability of the following family:



(a) $f_n=rho_n^2$,



(b) $g_n=rho_1*rho_n$ (convolution),



(c) $g_n=rho_1*rho_n^2$.



My attempt



Since for any $epsilon>0$ we have $int_{|x|<epsilon}|rho_n(x)|dxrightarrow 1$, $(rho_n)_n$ is not equiintegrable.



(b) Let $epsilon>0$. Choose $delta$ such that $m(A)leq delta$ implies $int_A|rho_1(x)|dx<epsilon$. Then
begin{align*} int_A|g_n(x)|dx&=int_A|rho_1*rho_n|dx\
&=int_Aint_{mathbb{R}}|rho_1(x-y)| |rho_n(y)|dydx\
&=int_{mathbb{R}} |rho_n(y)|left(int_A|rho_1(x-y)|dxright)dy\
&leq epsilon int_{mathbb{R}} |rho_n(y)|dy=epsilon.
end{align*}

Hence, the family $(g_n)_n$ is equiintegrable.



(a) I suspect its not equintegrable but I do not know what procee.
begin{align*} int_A|f_n(x)|dx&=int_A|rho_n^2|dx.
end{align*}

I hope to get this kind of inequality
begin{align*} int_A|rho_n^2|dx&leqint_A|rho_n|dx int_A|rho_n|dx.
end{align*}










share|cite|improve this question











$endgroup$




Let $(rho_n)_nsubset L^1$ be a Dirac sequence. Study the equiintegrability of the following family:



(a) $f_n=rho_n^2$,



(b) $g_n=rho_1*rho_n$ (convolution),



(c) $g_n=rho_1*rho_n^2$.



My attempt



Since for any $epsilon>0$ we have $int_{|x|<epsilon}|rho_n(x)|dxrightarrow 1$, $(rho_n)_n$ is not equiintegrable.



(b) Let $epsilon>0$. Choose $delta$ such that $m(A)leq delta$ implies $int_A|rho_1(x)|dx<epsilon$. Then
begin{align*} int_A|g_n(x)|dx&=int_A|rho_1*rho_n|dx\
&=int_Aint_{mathbb{R}}|rho_1(x-y)| |rho_n(y)|dydx\
&=int_{mathbb{R}} |rho_n(y)|left(int_A|rho_1(x-y)|dxright)dy\
&leq epsilon int_{mathbb{R}} |rho_n(y)|dy=epsilon.
end{align*}

Hence, the family $(g_n)_n$ is equiintegrable.



(a) I suspect its not equintegrable but I do not know what procee.
begin{align*} int_A|f_n(x)|dx&=int_A|rho_n^2|dx.
end{align*}

I hope to get this kind of inequality
begin{align*} int_A|rho_n^2|dx&leqint_A|rho_n|dx int_A|rho_n|dx.
end{align*}







functional-analysis measure-theory convergence lebesgue-integral lp-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 31 at 18:30







Muhammad Mubarak

















asked Jan 31 at 15:47









Muhammad MubarakMuhammad Mubarak

9810




9810












  • $begingroup$
    What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
    $endgroup$
    – Will M.
    Jan 31 at 18:07










  • $begingroup$
    A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
    $endgroup$
    – Muhammad Mubarak
    Jan 31 at 18:29


















  • $begingroup$
    What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
    $endgroup$
    – Will M.
    Jan 31 at 18:07










  • $begingroup$
    A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
    $endgroup$
    – Muhammad Mubarak
    Jan 31 at 18:29
















$begingroup$
What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
$endgroup$
– Will M.
Jan 31 at 18:07




$begingroup$
What is a Dirac sequence and are you sure it is in $mathbf{R}$? It sounds like the $rho_n$ are measures.
$endgroup$
– Will M.
Jan 31 at 18:07












$begingroup$
A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
$endgroup$
– Muhammad Mubarak
Jan 31 at 18:29




$begingroup$
A Dirac sequence is one that satisfies $rho_ngeq 0$, $int_Rrho=1$ and $int_{|x|>epsilon}rho_nrightarrow 0$. I mean in that that the domain is $R$
$endgroup$
– Muhammad Mubarak
Jan 31 at 18:29










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095040%2fequiintegrability-of-some-family-of-sequences%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095040%2fequiintegrability-of-some-family-of-sequences%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

'app-layout' is not a known element: how to share Component with different Modules