Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge?












2












$begingroup$


Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge? How can I use Direct Comparison Test for this problem?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge? How can I use Direct Comparison Test for this problem?










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge? How can I use Direct Comparison Test for this problem?










      share|cite|improve this question











      $endgroup$




      Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge? How can I use Direct Comparison Test for this problem?







      sequences-and-series limits






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 3 at 4:50









      J. W. Tanner

      4,7871420




      4,7871420










      asked Feb 3 at 2:49









      KyleKyle

      111




      111






















          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)



          Now:




          $sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)







          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Observe that



            $$ n + n cos n leq 2n $$



            from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              $a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$



              $lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $



              $sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?






              share|cite|improve this answer









              $endgroup$














                Your Answer








                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098102%2fdoes-the-series-sum-n-1-infty-1-nn-cosn-converge-or-diverge%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                3












                $begingroup$

                Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)



                Now:




                $sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)







                share|cite|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)



                  Now:




                  $sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)







                  share|cite|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)



                    Now:




                    $sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)







                    share|cite|improve this answer









                    $endgroup$



                    Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)



                    Now:




                    $sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)








                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Feb 3 at 2:57









                    babemcnuggetsbabemcnuggets

                    116110




                    116110























                        0












                        $begingroup$

                        Observe that



                        $$ n + n cos n leq 2n $$



                        from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Observe that



                          $$ n + n cos n leq 2n $$



                          from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Observe that



                            $$ n + n cos n leq 2n $$



                            from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)






                            share|cite|improve this answer









                            $endgroup$



                            Observe that



                            $$ n + n cos n leq 2n $$



                            from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 3 at 2:56









                            JamesJames

                            2,636425




                            2,636425























                                0












                                $begingroup$

                                $a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$



                                $lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $



                                $sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  $a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$



                                  $lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $



                                  $sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    $a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$



                                    $lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $



                                    $sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?






                                    share|cite|improve this answer









                                    $endgroup$



                                    $a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$



                                    $lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $



                                    $sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Feb 3 at 3:18









                                    Daman deepDaman deep

                                    756420




                                    756420






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098102%2fdoes-the-series-sum-n-1-infty-1-nn-cosn-converge-or-diverge%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                        How to fix TextFormField cause rebuild widget in Flutter