Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge?
$begingroup$
Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge? How can I use Direct Comparison Test for this problem?
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge? How can I use Direct Comparison Test for this problem?
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge? How can I use Direct Comparison Test for this problem?
sequences-and-series limits
$endgroup$
Does the series $sum_{n=1}^infty 1/(n+n cos(n))$ converge or diverge? How can I use Direct Comparison Test for this problem?
sequences-and-series limits
sequences-and-series limits
edited Feb 3 at 4:50
J. W. Tanner
4,7871420
4,7871420
asked Feb 3 at 2:49
KyleKyle
111
111
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)
Now:
$sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)
$endgroup$
add a comment |
$begingroup$
Observe that
$$ n + n cos n leq 2n $$
from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)
$endgroup$
add a comment |
$begingroup$
$a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$
$lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $
$sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098102%2fdoes-the-series-sum-n-1-infty-1-nn-cosn-converge-or-diverge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)
Now:
$sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)
$endgroup$
add a comment |
$begingroup$
Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)
Now:
$sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)
$endgroup$
add a comment |
$begingroup$
Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)
Now:
$sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)
$endgroup$
Notice that $sum_{n=1}^{infty}frac{1}{n+ncos(n)}≥ sum_{n=1}^{infty}frac{1}{n+n}$ (Why?)
Now:
$sum_{n=1}^{infty}frac{1}{2n}=frac{1}{2}sum_{n=1}^{infty}frac{1}{n}$ diverges (Why?)
answered Feb 3 at 2:57
babemcnuggetsbabemcnuggets
116110
116110
add a comment |
add a comment |
$begingroup$
Observe that
$$ n + n cos n leq 2n $$
from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)
$endgroup$
add a comment |
$begingroup$
Observe that
$$ n + n cos n leq 2n $$
from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)
$endgroup$
add a comment |
$begingroup$
Observe that
$$ n + n cos n leq 2n $$
from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)
$endgroup$
Observe that
$$ n + n cos n leq 2n $$
from which one easily sees the divergence of the series after taking reciprocals. (notice tha Harmonic $sum frac{1}{2n} $ diverge)
answered Feb 3 at 2:56
JamesJames
2,636425
2,636425
add a comment |
add a comment |
$begingroup$
$a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$
$lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $
$sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?
$endgroup$
add a comment |
$begingroup$
$a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$
$lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $
$sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?
$endgroup$
add a comment |
$begingroup$
$a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$
$lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $
$sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?
$endgroup$
$a_n=dfrac{1}{n+n cos{n} }$ and let $b_n=dfrac{1}{n}$
$lim_{n to infty}dfrac{a_n}{b_n}=dfrac{1}{1+cosn}=finite $
$sum_n a_n $ and $sum_n b_n$ converge or diverge together.$sum b_n$ is a divergent or convergent series ?
answered Feb 3 at 3:18
Daman deepDaman deep
756420
756420
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098102%2fdoes-the-series-sum-n-1-infty-1-nn-cosn-converge-or-diverge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown