Finding $int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2} dx$












7












$begingroup$



Calculate $$int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx$$




I have tried to put $displaystyle x=frac{1}{t}$ and $displaystyle dx=-frac{1}{t^2}dt$



$$ int^{infty}_{0}frac{t^2ln^2(t)}{(t^2-1)^2}dt$$



$$frac{1}{2}int^{infty}_{0}tln^2(t)frac{2t}{(t^2-1)^2}dt$$



$$ frac{1}{2}bigg[-tln^2(t)frac{1}{t^2-1}+int^{infty}_{0}frac{ln^2(t)}{t^2-1}+2int^{infty}_{0}frac{ln(t)}{t^2-1}dtbigg]$$



How can I solve it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you sure about the limits of the integral? Because the integrant has a singularity of the order $1$ at $x=1$.
    $endgroup$
    – Mundron Schmidt
    Feb 2 at 11:15










  • $begingroup$
    @MundronSchmidt W|A gives $pi^2/4$ as the result
    $endgroup$
    – TheSimpliFire
    Feb 2 at 11:19






  • 5




    $begingroup$
    Note that $$int_0^inftyfrac{ln^2x}{(1-x^2)^2},dx=int_{-infty}^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx$$ and begin{align}int_0^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx&=int_0^{infty}left(x^2e^{-3x}sum_{n=0}^{infty}left(left(1+nright)e^{-2nx}right)right),dx\&=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\&=sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}=frac{pi^2-7zeta(3)}8end{align}
    $endgroup$
    – TheSimpliFire
    Feb 2 at 11:45


















7












$begingroup$



Calculate $$int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx$$




I have tried to put $displaystyle x=frac{1}{t}$ and $displaystyle dx=-frac{1}{t^2}dt$



$$ int^{infty}_{0}frac{t^2ln^2(t)}{(t^2-1)^2}dt$$



$$frac{1}{2}int^{infty}_{0}tln^2(t)frac{2t}{(t^2-1)^2}dt$$



$$ frac{1}{2}bigg[-tln^2(t)frac{1}{t^2-1}+int^{infty}_{0}frac{ln^2(t)}{t^2-1}+2int^{infty}_{0}frac{ln(t)}{t^2-1}dtbigg]$$



How can I solve it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are you sure about the limits of the integral? Because the integrant has a singularity of the order $1$ at $x=1$.
    $endgroup$
    – Mundron Schmidt
    Feb 2 at 11:15










  • $begingroup$
    @MundronSchmidt W|A gives $pi^2/4$ as the result
    $endgroup$
    – TheSimpliFire
    Feb 2 at 11:19






  • 5




    $begingroup$
    Note that $$int_0^inftyfrac{ln^2x}{(1-x^2)^2},dx=int_{-infty}^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx$$ and begin{align}int_0^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx&=int_0^{infty}left(x^2e^{-3x}sum_{n=0}^{infty}left(left(1+nright)e^{-2nx}right)right),dx\&=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\&=sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}=frac{pi^2-7zeta(3)}8end{align}
    $endgroup$
    – TheSimpliFire
    Feb 2 at 11:45
















7












7








7


3



$begingroup$



Calculate $$int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx$$




I have tried to put $displaystyle x=frac{1}{t}$ and $displaystyle dx=-frac{1}{t^2}dt$



$$ int^{infty}_{0}frac{t^2ln^2(t)}{(t^2-1)^2}dt$$



$$frac{1}{2}int^{infty}_{0}tln^2(t)frac{2t}{(t^2-1)^2}dt$$



$$ frac{1}{2}bigg[-tln^2(t)frac{1}{t^2-1}+int^{infty}_{0}frac{ln^2(t)}{t^2-1}+2int^{infty}_{0}frac{ln(t)}{t^2-1}dtbigg]$$



How can I solve it?










share|cite|improve this question











$endgroup$





Calculate $$int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx$$




I have tried to put $displaystyle x=frac{1}{t}$ and $displaystyle dx=-frac{1}{t^2}dt$



$$ int^{infty}_{0}frac{t^2ln^2(t)}{(t^2-1)^2}dt$$



$$frac{1}{2}int^{infty}_{0}tln^2(t)frac{2t}{(t^2-1)^2}dt$$



$$ frac{1}{2}bigg[-tln^2(t)frac{1}{t^2-1}+int^{infty}_{0}frac{ln^2(t)}{t^2-1}+2int^{infty}_{0}frac{ln(t)}{t^2-1}dtbigg]$$



How can I solve it?







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 13:29









Zacky

7,87511062




7,87511062










asked Feb 2 at 10:59









jackyjacky

1,349816




1,349816












  • $begingroup$
    Are you sure about the limits of the integral? Because the integrant has a singularity of the order $1$ at $x=1$.
    $endgroup$
    – Mundron Schmidt
    Feb 2 at 11:15










  • $begingroup$
    @MundronSchmidt W|A gives $pi^2/4$ as the result
    $endgroup$
    – TheSimpliFire
    Feb 2 at 11:19






  • 5




    $begingroup$
    Note that $$int_0^inftyfrac{ln^2x}{(1-x^2)^2},dx=int_{-infty}^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx$$ and begin{align}int_0^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx&=int_0^{infty}left(x^2e^{-3x}sum_{n=0}^{infty}left(left(1+nright)e^{-2nx}right)right),dx\&=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\&=sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}=frac{pi^2-7zeta(3)}8end{align}
    $endgroup$
    – TheSimpliFire
    Feb 2 at 11:45




















  • $begingroup$
    Are you sure about the limits of the integral? Because the integrant has a singularity of the order $1$ at $x=1$.
    $endgroup$
    – Mundron Schmidt
    Feb 2 at 11:15










  • $begingroup$
    @MundronSchmidt W|A gives $pi^2/4$ as the result
    $endgroup$
    – TheSimpliFire
    Feb 2 at 11:19






  • 5




    $begingroup$
    Note that $$int_0^inftyfrac{ln^2x}{(1-x^2)^2},dx=int_{-infty}^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx$$ and begin{align}int_0^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx&=int_0^{infty}left(x^2e^{-3x}sum_{n=0}^{infty}left(left(1+nright)e^{-2nx}right)right),dx\&=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\&=sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}=frac{pi^2-7zeta(3)}8end{align}
    $endgroup$
    – TheSimpliFire
    Feb 2 at 11:45


















$begingroup$
Are you sure about the limits of the integral? Because the integrant has a singularity of the order $1$ at $x=1$.
$endgroup$
– Mundron Schmidt
Feb 2 at 11:15




$begingroup$
Are you sure about the limits of the integral? Because the integrant has a singularity of the order $1$ at $x=1$.
$endgroup$
– Mundron Schmidt
Feb 2 at 11:15












$begingroup$
@MundronSchmidt W|A gives $pi^2/4$ as the result
$endgroup$
– TheSimpliFire
Feb 2 at 11:19




$begingroup$
@MundronSchmidt W|A gives $pi^2/4$ as the result
$endgroup$
– TheSimpliFire
Feb 2 at 11:19




5




5




$begingroup$
Note that $$int_0^inftyfrac{ln^2x}{(1-x^2)^2},dx=int_{-infty}^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx$$ and begin{align}int_0^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx&=int_0^{infty}left(x^2e^{-3x}sum_{n=0}^{infty}left(left(1+nright)e^{-2nx}right)right),dx\&=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\&=sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}=frac{pi^2-7zeta(3)}8end{align}
$endgroup$
– TheSimpliFire
Feb 2 at 11:45






$begingroup$
Note that $$int_0^inftyfrac{ln^2x}{(1-x^2)^2},dx=int_{-infty}^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx$$ and begin{align}int_0^inftyfrac{x^2e^{-3x}}{(1-e^{2x})^2},dx&=int_0^{infty}left(x^2e^{-3x}sum_{n=0}^{infty}left(left(1+nright)e^{-2nx}right)right),dx\&=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\&=sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}=frac{pi^2-7zeta(3)}8end{align}
$endgroup$
– TheSimpliFire
Feb 2 at 11:45












3 Answers
3






active

oldest

votes


















7












$begingroup$

You're definetly on the right track with that substitution of $x=frac1t$



Basically we have: $$I=int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx=int_0^infty frac{x^2ln^2 x}{(1-x^2)^2}dx$$
Now what if we add them up?
$$2I=int_0^infty ln^2 x frac{1+x^2}{(1-x^2)^2}dx$$
If you don't know how to deal easily with the integral $$int frac{1+x^2}{(1-x^2)^2}dx=frac{x}{1-x^2}+C$$
I recommend you to take a look here.



Anyway we have, integrating by parts:
$$2I= underbrace{frac{x}{1-x^2}ln^2x bigg|_0^infty}_{=0} +2underbrace{int_0^infty frac{ln x}{x^2-1}dx}_{large =frac{pi^2}{4}}$$
$$Rightarrow 2I= 2cdot frac{pi^2}{4} Rightarrow I=frac{pi^2}{4}$$
For the last integral see here for example.






share|cite|improve this answer











$endgroup$





















    3












    $begingroup$

    This is a variant of TheSimpliFire's approach given in a comment.



    By letting $x=e^t$ we get
    $$begin{align*}
    int_0^inftyfrac{ln^2(x)}{(1-x^2)^2},dx
    &=int_{-infty}^inftyfrac{t^2e^{t}}{(1-e^{2t})^2},dt\
    &=int_{0}^{+infty}frac{t^2e^{-t}}{(1-e^{-2t})^2},dt+int_{0}^inftyfrac{t^2e^{-3t}}{(1-e^{-2t})^2},dt\
    &=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+1)t},dt+sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\
    &=sum_{n=0}^inftyfrac{2(1+n)}{(2n+1)^3}+sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}\
    &=left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}+sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)+left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}-sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)\
    &=2sum_{n=0}^inftyfrac{1}{(2n+1)^2}=2left(sum_{n=0}^inftyfrac{1}{n^2}-sum_{n=0}^inftyfrac{1}{(2n)^2}right)\&=2left(1-frac{1}{4}right)sum_{n=0}^inftyfrac{1}{n^2}=frac{3}{2}cdot frac{pi^2}{6}=frac{pi^2}{4}.
    end{align*}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Could you provide a reference for those two fascinating sums (the ones with the $(2n+1)^3$ and $(2n+3)^3$ in the denominators)? Thanks
      $endgroup$
      – clathratus
      Feb 9 at 16:15






    • 1




      $begingroup$
      @clathratus Actually we don't need them. See my edit!
      $endgroup$
      – Robert Z
      Feb 9 at 16:43












    • $begingroup$
      Beautiful! Still though, any sources regarding those sums would be appreciated. They are intriguing indeed.
      $endgroup$
      – clathratus
      Feb 9 at 20:35






    • 1




      $begingroup$
      $sum_{n=0}^inftyfrac{1}{(2n+1)^3}=sum_{n=1}^inftyfrac{1}{n^3}-sum_{n=1}^inftyfrac{1}{(2n)^3}=frac{7zeta(3)}{8}.$
      $endgroup$
      – Robert Z
      Feb 9 at 21:14



















    1












    $begingroup$

    Here is yet another slight variation on a theme.



    Let
    $$I = int_0^infty frac{ln^2}{(1 - x^2)^2} , dx$$
    then
    begin{align}
    I &= int_0^1 frac{ln^2 x}{(1 - x^2)^2} , dx + int_1^infty frac{ln^2 x}{(1 - x^2)^2} , dx = int_0^1 frac{(1 + x^2) ln^2 x}{(1 - x^2)^2} , dx tag1,
    end{align}

    after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals.



    As
    $$frac{1}{1 - x^2} = sum_{n = 0}^infty x^{2n}, qquad |x| < 1,$$
    differentiating with respect to $x$ gives
    $$frac{1}{(1 - x^2)^2} = sum_{n = 1}^infty n x^{2n - 2}.$$
    On substituting the above series expansion in (1), after interchanging the order of the summation with the integration we have
    $$I = sum_{n = 1}^infty n int_0^1 (x^{2n - 2} + x^{2n}) ln^2 x , dx.$$
    Integrating by parts twice, we are left with
    $$I = sum_{n = 1}^infty left (frac{2n}{(2n - 1)^3} + frac{2n}{(2n + 1)^3} right ).$$
    As the series is absolutely convergent, terms can be rearranged without changing its sum. Doing so we have
    begin{align}
    I &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} + frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
    &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
    &= sum_{n = 0}^infty left [frac{1}{(2n + 1)^2} + frac{1}{(2n + 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
    &= 2 + 2 sum_{n = 1}^infty frac{1}{(2n + 1)^2}\
    &= 2 sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
    &= 2 left [sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty frac{1}{(2n)^2} right ]\
    &= 2 left (1 - frac{1}{4} right ) sum_{n = 1}^infty frac{1}{n^2}\
    &= frac{3}{2} sum_{n = 1}^infty frac{1}{n^2}\
    &= frac{3}{2} cdot frac{pi^2}{6}\
    &= frac{pi^2}{4},
    end{align}

    as expected.






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097187%2ffinding-int-infty-0-frac-ln2x1-x22-dx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      You're definetly on the right track with that substitution of $x=frac1t$



      Basically we have: $$I=int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx=int_0^infty frac{x^2ln^2 x}{(1-x^2)^2}dx$$
      Now what if we add them up?
      $$2I=int_0^infty ln^2 x frac{1+x^2}{(1-x^2)^2}dx$$
      If you don't know how to deal easily with the integral $$int frac{1+x^2}{(1-x^2)^2}dx=frac{x}{1-x^2}+C$$
      I recommend you to take a look here.



      Anyway we have, integrating by parts:
      $$2I= underbrace{frac{x}{1-x^2}ln^2x bigg|_0^infty}_{=0} +2underbrace{int_0^infty frac{ln x}{x^2-1}dx}_{large =frac{pi^2}{4}}$$
      $$Rightarrow 2I= 2cdot frac{pi^2}{4} Rightarrow I=frac{pi^2}{4}$$
      For the last integral see here for example.






      share|cite|improve this answer











      $endgroup$


















        7












        $begingroup$

        You're definetly on the right track with that substitution of $x=frac1t$



        Basically we have: $$I=int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx=int_0^infty frac{x^2ln^2 x}{(1-x^2)^2}dx$$
        Now what if we add them up?
        $$2I=int_0^infty ln^2 x frac{1+x^2}{(1-x^2)^2}dx$$
        If you don't know how to deal easily with the integral $$int frac{1+x^2}{(1-x^2)^2}dx=frac{x}{1-x^2}+C$$
        I recommend you to take a look here.



        Anyway we have, integrating by parts:
        $$2I= underbrace{frac{x}{1-x^2}ln^2x bigg|_0^infty}_{=0} +2underbrace{int_0^infty frac{ln x}{x^2-1}dx}_{large =frac{pi^2}{4}}$$
        $$Rightarrow 2I= 2cdot frac{pi^2}{4} Rightarrow I=frac{pi^2}{4}$$
        For the last integral see here for example.






        share|cite|improve this answer











        $endgroup$
















          7












          7








          7





          $begingroup$

          You're definetly on the right track with that substitution of $x=frac1t$



          Basically we have: $$I=int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx=int_0^infty frac{x^2ln^2 x}{(1-x^2)^2}dx$$
          Now what if we add them up?
          $$2I=int_0^infty ln^2 x frac{1+x^2}{(1-x^2)^2}dx$$
          If you don't know how to deal easily with the integral $$int frac{1+x^2}{(1-x^2)^2}dx=frac{x}{1-x^2}+C$$
          I recommend you to take a look here.



          Anyway we have, integrating by parts:
          $$2I= underbrace{frac{x}{1-x^2}ln^2x bigg|_0^infty}_{=0} +2underbrace{int_0^infty frac{ln x}{x^2-1}dx}_{large =frac{pi^2}{4}}$$
          $$Rightarrow 2I= 2cdot frac{pi^2}{4} Rightarrow I=frac{pi^2}{4}$$
          For the last integral see here for example.






          share|cite|improve this answer











          $endgroup$



          You're definetly on the right track with that substitution of $x=frac1t$



          Basically we have: $$I=int^{infty}_{0}frac{ln^2(x)}{(1-x^2)^2}dx=int_0^infty frac{x^2ln^2 x}{(1-x^2)^2}dx$$
          Now what if we add them up?
          $$2I=int_0^infty ln^2 x frac{1+x^2}{(1-x^2)^2}dx$$
          If you don't know how to deal easily with the integral $$int frac{1+x^2}{(1-x^2)^2}dx=frac{x}{1-x^2}+C$$
          I recommend you to take a look here.



          Anyway we have, integrating by parts:
          $$2I= underbrace{frac{x}{1-x^2}ln^2x bigg|_0^infty}_{=0} +2underbrace{int_0^infty frac{ln x}{x^2-1}dx}_{large =frac{pi^2}{4}}$$
          $$Rightarrow 2I= 2cdot frac{pi^2}{4} Rightarrow I=frac{pi^2}{4}$$
          For the last integral see here for example.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Feb 2 at 13:25

























          answered Feb 2 at 13:20









          ZackyZacky

          7,87511062




          7,87511062























              3












              $begingroup$

              This is a variant of TheSimpliFire's approach given in a comment.



              By letting $x=e^t$ we get
              $$begin{align*}
              int_0^inftyfrac{ln^2(x)}{(1-x^2)^2},dx
              &=int_{-infty}^inftyfrac{t^2e^{t}}{(1-e^{2t})^2},dt\
              &=int_{0}^{+infty}frac{t^2e^{-t}}{(1-e^{-2t})^2},dt+int_{0}^inftyfrac{t^2e^{-3t}}{(1-e^{-2t})^2},dt\
              &=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+1)t},dt+sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\
              &=sum_{n=0}^inftyfrac{2(1+n)}{(2n+1)^3}+sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}\
              &=left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}+sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)+left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}-sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)\
              &=2sum_{n=0}^inftyfrac{1}{(2n+1)^2}=2left(sum_{n=0}^inftyfrac{1}{n^2}-sum_{n=0}^inftyfrac{1}{(2n)^2}right)\&=2left(1-frac{1}{4}right)sum_{n=0}^inftyfrac{1}{n^2}=frac{3}{2}cdot frac{pi^2}{6}=frac{pi^2}{4}.
              end{align*}$$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Could you provide a reference for those two fascinating sums (the ones with the $(2n+1)^3$ and $(2n+3)^3$ in the denominators)? Thanks
                $endgroup$
                – clathratus
                Feb 9 at 16:15






              • 1




                $begingroup$
                @clathratus Actually we don't need them. See my edit!
                $endgroup$
                – Robert Z
                Feb 9 at 16:43












              • $begingroup$
                Beautiful! Still though, any sources regarding those sums would be appreciated. They are intriguing indeed.
                $endgroup$
                – clathratus
                Feb 9 at 20:35






              • 1




                $begingroup$
                $sum_{n=0}^inftyfrac{1}{(2n+1)^3}=sum_{n=1}^inftyfrac{1}{n^3}-sum_{n=1}^inftyfrac{1}{(2n)^3}=frac{7zeta(3)}{8}.$
                $endgroup$
                – Robert Z
                Feb 9 at 21:14
















              3












              $begingroup$

              This is a variant of TheSimpliFire's approach given in a comment.



              By letting $x=e^t$ we get
              $$begin{align*}
              int_0^inftyfrac{ln^2(x)}{(1-x^2)^2},dx
              &=int_{-infty}^inftyfrac{t^2e^{t}}{(1-e^{2t})^2},dt\
              &=int_{0}^{+infty}frac{t^2e^{-t}}{(1-e^{-2t})^2},dt+int_{0}^inftyfrac{t^2e^{-3t}}{(1-e^{-2t})^2},dt\
              &=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+1)t},dt+sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\
              &=sum_{n=0}^inftyfrac{2(1+n)}{(2n+1)^3}+sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}\
              &=left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}+sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)+left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}-sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)\
              &=2sum_{n=0}^inftyfrac{1}{(2n+1)^2}=2left(sum_{n=0}^inftyfrac{1}{n^2}-sum_{n=0}^inftyfrac{1}{(2n)^2}right)\&=2left(1-frac{1}{4}right)sum_{n=0}^inftyfrac{1}{n^2}=frac{3}{2}cdot frac{pi^2}{6}=frac{pi^2}{4}.
              end{align*}$$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Could you provide a reference for those two fascinating sums (the ones with the $(2n+1)^3$ and $(2n+3)^3$ in the denominators)? Thanks
                $endgroup$
                – clathratus
                Feb 9 at 16:15






              • 1




                $begingroup$
                @clathratus Actually we don't need them. See my edit!
                $endgroup$
                – Robert Z
                Feb 9 at 16:43












              • $begingroup$
                Beautiful! Still though, any sources regarding those sums would be appreciated. They are intriguing indeed.
                $endgroup$
                – clathratus
                Feb 9 at 20:35






              • 1




                $begingroup$
                $sum_{n=0}^inftyfrac{1}{(2n+1)^3}=sum_{n=1}^inftyfrac{1}{n^3}-sum_{n=1}^inftyfrac{1}{(2n)^3}=frac{7zeta(3)}{8}.$
                $endgroup$
                – Robert Z
                Feb 9 at 21:14














              3












              3








              3





              $begingroup$

              This is a variant of TheSimpliFire's approach given in a comment.



              By letting $x=e^t$ we get
              $$begin{align*}
              int_0^inftyfrac{ln^2(x)}{(1-x^2)^2},dx
              &=int_{-infty}^inftyfrac{t^2e^{t}}{(1-e^{2t})^2},dt\
              &=int_{0}^{+infty}frac{t^2e^{-t}}{(1-e^{-2t})^2},dt+int_{0}^inftyfrac{t^2e^{-3t}}{(1-e^{-2t})^2},dt\
              &=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+1)t},dt+sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\
              &=sum_{n=0}^inftyfrac{2(1+n)}{(2n+1)^3}+sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}\
              &=left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}+sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)+left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}-sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)\
              &=2sum_{n=0}^inftyfrac{1}{(2n+1)^2}=2left(sum_{n=0}^inftyfrac{1}{n^2}-sum_{n=0}^inftyfrac{1}{(2n)^2}right)\&=2left(1-frac{1}{4}right)sum_{n=0}^inftyfrac{1}{n^2}=frac{3}{2}cdot frac{pi^2}{6}=frac{pi^2}{4}.
              end{align*}$$






              share|cite|improve this answer











              $endgroup$



              This is a variant of TheSimpliFire's approach given in a comment.



              By letting $x=e^t$ we get
              $$begin{align*}
              int_0^inftyfrac{ln^2(x)}{(1-x^2)^2},dx
              &=int_{-infty}^inftyfrac{t^2e^{t}}{(1-e^{2t})^2},dt\
              &=int_{0}^{+infty}frac{t^2e^{-t}}{(1-e^{-2t})^2},dt+int_{0}^inftyfrac{t^2e^{-3t}}{(1-e^{-2t})^2},dt\
              &=sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+1)t},dt+sum_{n=0}^infty (1+n)int_0^infty t^2e^{-(2n+3)t},dt\
              &=sum_{n=0}^inftyfrac{2(1+n)}{(2n+1)^3}+sum_{n=0}^inftyfrac{2(1+n)}{(2n+3)^3}\
              &=left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}+sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)+left(sum_{n=0}^inftyfrac{1}{(2n+1)^2}-sum_{n=0}^inftyfrac{1}{(2n+1)^3}right)\
              &=2sum_{n=0}^inftyfrac{1}{(2n+1)^2}=2left(sum_{n=0}^inftyfrac{1}{n^2}-sum_{n=0}^inftyfrac{1}{(2n)^2}right)\&=2left(1-frac{1}{4}right)sum_{n=0}^inftyfrac{1}{n^2}=frac{3}{2}cdot frac{pi^2}{6}=frac{pi^2}{4}.
              end{align*}$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Feb 9 at 16:56

























              answered Feb 9 at 11:31









              Robert ZRobert Z

              102k1072145




              102k1072145












              • $begingroup$
                Could you provide a reference for those two fascinating sums (the ones with the $(2n+1)^3$ and $(2n+3)^3$ in the denominators)? Thanks
                $endgroup$
                – clathratus
                Feb 9 at 16:15






              • 1




                $begingroup$
                @clathratus Actually we don't need them. See my edit!
                $endgroup$
                – Robert Z
                Feb 9 at 16:43












              • $begingroup$
                Beautiful! Still though, any sources regarding those sums would be appreciated. They are intriguing indeed.
                $endgroup$
                – clathratus
                Feb 9 at 20:35






              • 1




                $begingroup$
                $sum_{n=0}^inftyfrac{1}{(2n+1)^3}=sum_{n=1}^inftyfrac{1}{n^3}-sum_{n=1}^inftyfrac{1}{(2n)^3}=frac{7zeta(3)}{8}.$
                $endgroup$
                – Robert Z
                Feb 9 at 21:14


















              • $begingroup$
                Could you provide a reference for those two fascinating sums (the ones with the $(2n+1)^3$ and $(2n+3)^3$ in the denominators)? Thanks
                $endgroup$
                – clathratus
                Feb 9 at 16:15






              • 1




                $begingroup$
                @clathratus Actually we don't need them. See my edit!
                $endgroup$
                – Robert Z
                Feb 9 at 16:43












              • $begingroup$
                Beautiful! Still though, any sources regarding those sums would be appreciated. They are intriguing indeed.
                $endgroup$
                – clathratus
                Feb 9 at 20:35






              • 1




                $begingroup$
                $sum_{n=0}^inftyfrac{1}{(2n+1)^3}=sum_{n=1}^inftyfrac{1}{n^3}-sum_{n=1}^inftyfrac{1}{(2n)^3}=frac{7zeta(3)}{8}.$
                $endgroup$
                – Robert Z
                Feb 9 at 21:14
















              $begingroup$
              Could you provide a reference for those two fascinating sums (the ones with the $(2n+1)^3$ and $(2n+3)^3$ in the denominators)? Thanks
              $endgroup$
              – clathratus
              Feb 9 at 16:15




              $begingroup$
              Could you provide a reference for those two fascinating sums (the ones with the $(2n+1)^3$ and $(2n+3)^3$ in the denominators)? Thanks
              $endgroup$
              – clathratus
              Feb 9 at 16:15




              1




              1




              $begingroup$
              @clathratus Actually we don't need them. See my edit!
              $endgroup$
              – Robert Z
              Feb 9 at 16:43






              $begingroup$
              @clathratus Actually we don't need them. See my edit!
              $endgroup$
              – Robert Z
              Feb 9 at 16:43














              $begingroup$
              Beautiful! Still though, any sources regarding those sums would be appreciated. They are intriguing indeed.
              $endgroup$
              – clathratus
              Feb 9 at 20:35




              $begingroup$
              Beautiful! Still though, any sources regarding those sums would be appreciated. They are intriguing indeed.
              $endgroup$
              – clathratus
              Feb 9 at 20:35




              1




              1




              $begingroup$
              $sum_{n=0}^inftyfrac{1}{(2n+1)^3}=sum_{n=1}^inftyfrac{1}{n^3}-sum_{n=1}^inftyfrac{1}{(2n)^3}=frac{7zeta(3)}{8}.$
              $endgroup$
              – Robert Z
              Feb 9 at 21:14




              $begingroup$
              $sum_{n=0}^inftyfrac{1}{(2n+1)^3}=sum_{n=1}^inftyfrac{1}{n^3}-sum_{n=1}^inftyfrac{1}{(2n)^3}=frac{7zeta(3)}{8}.$
              $endgroup$
              – Robert Z
              Feb 9 at 21:14











              1












              $begingroup$

              Here is yet another slight variation on a theme.



              Let
              $$I = int_0^infty frac{ln^2}{(1 - x^2)^2} , dx$$
              then
              begin{align}
              I &= int_0^1 frac{ln^2 x}{(1 - x^2)^2} , dx + int_1^infty frac{ln^2 x}{(1 - x^2)^2} , dx = int_0^1 frac{(1 + x^2) ln^2 x}{(1 - x^2)^2} , dx tag1,
              end{align}

              after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals.



              As
              $$frac{1}{1 - x^2} = sum_{n = 0}^infty x^{2n}, qquad |x| < 1,$$
              differentiating with respect to $x$ gives
              $$frac{1}{(1 - x^2)^2} = sum_{n = 1}^infty n x^{2n - 2}.$$
              On substituting the above series expansion in (1), after interchanging the order of the summation with the integration we have
              $$I = sum_{n = 1}^infty n int_0^1 (x^{2n - 2} + x^{2n}) ln^2 x , dx.$$
              Integrating by parts twice, we are left with
              $$I = sum_{n = 1}^infty left (frac{2n}{(2n - 1)^3} + frac{2n}{(2n + 1)^3} right ).$$
              As the series is absolutely convergent, terms can be rearranged without changing its sum. Doing so we have
              begin{align}
              I &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} + frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
              &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
              &= sum_{n = 0}^infty left [frac{1}{(2n + 1)^2} + frac{1}{(2n + 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
              &= 2 + 2 sum_{n = 1}^infty frac{1}{(2n + 1)^2}\
              &= 2 sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
              &= 2 left [sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty frac{1}{(2n)^2} right ]\
              &= 2 left (1 - frac{1}{4} right ) sum_{n = 1}^infty frac{1}{n^2}\
              &= frac{3}{2} sum_{n = 1}^infty frac{1}{n^2}\
              &= frac{3}{2} cdot frac{pi^2}{6}\
              &= frac{pi^2}{4},
              end{align}

              as expected.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Here is yet another slight variation on a theme.



                Let
                $$I = int_0^infty frac{ln^2}{(1 - x^2)^2} , dx$$
                then
                begin{align}
                I &= int_0^1 frac{ln^2 x}{(1 - x^2)^2} , dx + int_1^infty frac{ln^2 x}{(1 - x^2)^2} , dx = int_0^1 frac{(1 + x^2) ln^2 x}{(1 - x^2)^2} , dx tag1,
                end{align}

                after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals.



                As
                $$frac{1}{1 - x^2} = sum_{n = 0}^infty x^{2n}, qquad |x| < 1,$$
                differentiating with respect to $x$ gives
                $$frac{1}{(1 - x^2)^2} = sum_{n = 1}^infty n x^{2n - 2}.$$
                On substituting the above series expansion in (1), after interchanging the order of the summation with the integration we have
                $$I = sum_{n = 1}^infty n int_0^1 (x^{2n - 2} + x^{2n}) ln^2 x , dx.$$
                Integrating by parts twice, we are left with
                $$I = sum_{n = 1}^infty left (frac{2n}{(2n - 1)^3} + frac{2n}{(2n + 1)^3} right ).$$
                As the series is absolutely convergent, terms can be rearranged without changing its sum. Doing so we have
                begin{align}
                I &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} + frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                &= sum_{n = 0}^infty left [frac{1}{(2n + 1)^2} + frac{1}{(2n + 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                &= 2 + 2 sum_{n = 1}^infty frac{1}{(2n + 1)^2}\
                &= 2 sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
                &= 2 left [sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty frac{1}{(2n)^2} right ]\
                &= 2 left (1 - frac{1}{4} right ) sum_{n = 1}^infty frac{1}{n^2}\
                &= frac{3}{2} sum_{n = 1}^infty frac{1}{n^2}\
                &= frac{3}{2} cdot frac{pi^2}{6}\
                &= frac{pi^2}{4},
                end{align}

                as expected.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Here is yet another slight variation on a theme.



                  Let
                  $$I = int_0^infty frac{ln^2}{(1 - x^2)^2} , dx$$
                  then
                  begin{align}
                  I &= int_0^1 frac{ln^2 x}{(1 - x^2)^2} , dx + int_1^infty frac{ln^2 x}{(1 - x^2)^2} , dx = int_0^1 frac{(1 + x^2) ln^2 x}{(1 - x^2)^2} , dx tag1,
                  end{align}

                  after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals.



                  As
                  $$frac{1}{1 - x^2} = sum_{n = 0}^infty x^{2n}, qquad |x| < 1,$$
                  differentiating with respect to $x$ gives
                  $$frac{1}{(1 - x^2)^2} = sum_{n = 1}^infty n x^{2n - 2}.$$
                  On substituting the above series expansion in (1), after interchanging the order of the summation with the integration we have
                  $$I = sum_{n = 1}^infty n int_0^1 (x^{2n - 2} + x^{2n}) ln^2 x , dx.$$
                  Integrating by parts twice, we are left with
                  $$I = sum_{n = 1}^infty left (frac{2n}{(2n - 1)^3} + frac{2n}{(2n + 1)^3} right ).$$
                  As the series is absolutely convergent, terms can be rearranged without changing its sum. Doing so we have
                  begin{align}
                  I &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} + frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                  &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                  &= sum_{n = 0}^infty left [frac{1}{(2n + 1)^2} + frac{1}{(2n + 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                  &= 2 + 2 sum_{n = 1}^infty frac{1}{(2n + 1)^2}\
                  &= 2 sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
                  &= 2 left [sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty frac{1}{(2n)^2} right ]\
                  &= 2 left (1 - frac{1}{4} right ) sum_{n = 1}^infty frac{1}{n^2}\
                  &= frac{3}{2} sum_{n = 1}^infty frac{1}{n^2}\
                  &= frac{3}{2} cdot frac{pi^2}{6}\
                  &= frac{pi^2}{4},
                  end{align}

                  as expected.






                  share|cite|improve this answer









                  $endgroup$



                  Here is yet another slight variation on a theme.



                  Let
                  $$I = int_0^infty frac{ln^2}{(1 - x^2)^2} , dx$$
                  then
                  begin{align}
                  I &= int_0^1 frac{ln^2 x}{(1 - x^2)^2} , dx + int_1^infty frac{ln^2 x}{(1 - x^2)^2} , dx = int_0^1 frac{(1 + x^2) ln^2 x}{(1 - x^2)^2} , dx tag1,
                  end{align}

                  after a substitution of $x mapsto 1/x$ has been enforced in the second of the integrals.



                  As
                  $$frac{1}{1 - x^2} = sum_{n = 0}^infty x^{2n}, qquad |x| < 1,$$
                  differentiating with respect to $x$ gives
                  $$frac{1}{(1 - x^2)^2} = sum_{n = 1}^infty n x^{2n - 2}.$$
                  On substituting the above series expansion in (1), after interchanging the order of the summation with the integration we have
                  $$I = sum_{n = 1}^infty n int_0^1 (x^{2n - 2} + x^{2n}) ln^2 x , dx.$$
                  Integrating by parts twice, we are left with
                  $$I = sum_{n = 1}^infty left (frac{2n}{(2n - 1)^3} + frac{2n}{(2n + 1)^3} right ).$$
                  As the series is absolutely convergent, terms can be rearranged without changing its sum. Doing so we have
                  begin{align}
                  I &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} + frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                  &= sum_{n = 1}^infty left [frac{1}{(2n - 1)^2} + frac{1}{(2n - 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                  &= sum_{n = 0}^infty left [frac{1}{(2n + 1)^2} + frac{1}{(2n + 1)^3} right ] + sum_{n = 1}^infty left [frac{1}{(2n + 1)^2} - frac{1}{(2n + 1)^3} right ]\
                  &= 2 + 2 sum_{n = 1}^infty frac{1}{(2n + 1)^2}\
                  &= 2 sum_{n = 0}^infty frac{1}{(2n + 1)^2}\
                  &= 2 left [sum_{n = 1}^infty frac{1}{n^2} - sum_{n = 1}^infty frac{1}{(2n)^2} right ]\
                  &= 2 left (1 - frac{1}{4} right ) sum_{n = 1}^infty frac{1}{n^2}\
                  &= frac{3}{2} sum_{n = 1}^infty frac{1}{n^2}\
                  &= frac{3}{2} cdot frac{pi^2}{6}\
                  &= frac{pi^2}{4},
                  end{align}

                  as expected.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Feb 9 at 21:44









                  omegadotomegadot

                  6,2692829




                  6,2692829






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097187%2ffinding-int-infty-0-frac-ln2x1-x22-dx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                      How to fix TextFormField cause rebuild widget in Flutter