How to approximate this nonlinear ODE?
$begingroup$
I need try to approximate this nonlinear ODE
$left( frac{d^2}{dx^2}y(x) right)left( 1+4(y(x))^2 right)+8xleft( frac{d}{dx}y(x) right)^2-4(y(x))left( frac{d}{dx}y(x) right)^2+2(9.81)(y(x))=0$
But, i could not find a method to achieve it. I appreciate your help in this problem.
ordinary-differential-equations numerical-methods
$endgroup$
add a comment |
$begingroup$
I need try to approximate this nonlinear ODE
$left( frac{d^2}{dx^2}y(x) right)left( 1+4(y(x))^2 right)+8xleft( frac{d}{dx}y(x) right)^2-4(y(x))left( frac{d}{dx}y(x) right)^2+2(9.81)(y(x))=0$
But, i could not find a method to achieve it. I appreciate your help in this problem.
ordinary-differential-equations numerical-methods
$endgroup$
add a comment |
$begingroup$
I need try to approximate this nonlinear ODE
$left( frac{d^2}{dx^2}y(x) right)left( 1+4(y(x))^2 right)+8xleft( frac{d}{dx}y(x) right)^2-4(y(x))left( frac{d}{dx}y(x) right)^2+2(9.81)(y(x))=0$
But, i could not find a method to achieve it. I appreciate your help in this problem.
ordinary-differential-equations numerical-methods
$endgroup$
I need try to approximate this nonlinear ODE
$left( frac{d^2}{dx^2}y(x) right)left( 1+4(y(x))^2 right)+8xleft( frac{d}{dx}y(x) right)^2-4(y(x))left( frac{d}{dx}y(x) right)^2+2(9.81)(y(x))=0$
But, i could not find a method to achieve it. I appreciate your help in this problem.
ordinary-differential-equations numerical-methods
ordinary-differential-equations numerical-methods
asked Feb 3 at 3:08


retro_varretro_var
652215
652215
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Starting from the ODE $(1+4y^2)y''+4(2x-y)(y')^2+2gy = 0$ ($g := 9.81$), we define the vector-valued function $boldsymbol{y} := (y,y')^{top}$. We then obtain a first-order ODE for $boldsymbol{y}$:
begin{equation}
boldsymbol{y}' = left( begin{array}{c}
y'\
y''
end{array}
right) = left( begin{array}{c}
y'\
-frac{4(2x-y)(y')^2+2gy}{1+4y^2}
end{array}
right) =: boldsymbol{f}(x,boldsymbol{y}).
end{equation}
If you also know some initial value $boldsymbol{y}(x_0) = boldsymbol{y}_0$, you can then use a Runge-Kutta method, for example, to solve this system of ODEs numerically.
The numerical solution $(x_i,boldsymbol{y}_i)$ will contain approximations for $y(x_i)$ and for $y'(x_i)$ at the points $x_i$, $i=1,2,dots$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098116%2fhow-to-approximate-this-nonlinear-ode%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Starting from the ODE $(1+4y^2)y''+4(2x-y)(y')^2+2gy = 0$ ($g := 9.81$), we define the vector-valued function $boldsymbol{y} := (y,y')^{top}$. We then obtain a first-order ODE for $boldsymbol{y}$:
begin{equation}
boldsymbol{y}' = left( begin{array}{c}
y'\
y''
end{array}
right) = left( begin{array}{c}
y'\
-frac{4(2x-y)(y')^2+2gy}{1+4y^2}
end{array}
right) =: boldsymbol{f}(x,boldsymbol{y}).
end{equation}
If you also know some initial value $boldsymbol{y}(x_0) = boldsymbol{y}_0$, you can then use a Runge-Kutta method, for example, to solve this system of ODEs numerically.
The numerical solution $(x_i,boldsymbol{y}_i)$ will contain approximations for $y(x_i)$ and for $y'(x_i)$ at the points $x_i$, $i=1,2,dots$
$endgroup$
add a comment |
$begingroup$
Starting from the ODE $(1+4y^2)y''+4(2x-y)(y')^2+2gy = 0$ ($g := 9.81$), we define the vector-valued function $boldsymbol{y} := (y,y')^{top}$. We then obtain a first-order ODE for $boldsymbol{y}$:
begin{equation}
boldsymbol{y}' = left( begin{array}{c}
y'\
y''
end{array}
right) = left( begin{array}{c}
y'\
-frac{4(2x-y)(y')^2+2gy}{1+4y^2}
end{array}
right) =: boldsymbol{f}(x,boldsymbol{y}).
end{equation}
If you also know some initial value $boldsymbol{y}(x_0) = boldsymbol{y}_0$, you can then use a Runge-Kutta method, for example, to solve this system of ODEs numerically.
The numerical solution $(x_i,boldsymbol{y}_i)$ will contain approximations for $y(x_i)$ and for $y'(x_i)$ at the points $x_i$, $i=1,2,dots$
$endgroup$
add a comment |
$begingroup$
Starting from the ODE $(1+4y^2)y''+4(2x-y)(y')^2+2gy = 0$ ($g := 9.81$), we define the vector-valued function $boldsymbol{y} := (y,y')^{top}$. We then obtain a first-order ODE for $boldsymbol{y}$:
begin{equation}
boldsymbol{y}' = left( begin{array}{c}
y'\
y''
end{array}
right) = left( begin{array}{c}
y'\
-frac{4(2x-y)(y')^2+2gy}{1+4y^2}
end{array}
right) =: boldsymbol{f}(x,boldsymbol{y}).
end{equation}
If you also know some initial value $boldsymbol{y}(x_0) = boldsymbol{y}_0$, you can then use a Runge-Kutta method, for example, to solve this system of ODEs numerically.
The numerical solution $(x_i,boldsymbol{y}_i)$ will contain approximations for $y(x_i)$ and for $y'(x_i)$ at the points $x_i$, $i=1,2,dots$
$endgroup$
Starting from the ODE $(1+4y^2)y''+4(2x-y)(y')^2+2gy = 0$ ($g := 9.81$), we define the vector-valued function $boldsymbol{y} := (y,y')^{top}$. We then obtain a first-order ODE for $boldsymbol{y}$:
begin{equation}
boldsymbol{y}' = left( begin{array}{c}
y'\
y''
end{array}
right) = left( begin{array}{c}
y'\
-frac{4(2x-y)(y')^2+2gy}{1+4y^2}
end{array}
right) =: boldsymbol{f}(x,boldsymbol{y}).
end{equation}
If you also know some initial value $boldsymbol{y}(x_0) = boldsymbol{y}_0$, you can then use a Runge-Kutta method, for example, to solve this system of ODEs numerically.
The numerical solution $(x_i,boldsymbol{y}_i)$ will contain approximations for $y(x_i)$ and for $y'(x_i)$ at the points $x_i$, $i=1,2,dots$
answered Feb 3 at 7:22
ChristophChristoph
59616
59616
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098116%2fhow-to-approximate-this-nonlinear-ode%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown