How to calculate $intlimits_{0}^{frac{pi}{2}}frac{mathrm{d}x}{1+tan^{a}(x)}$ [duplicate]
$begingroup$
This question already has an answer here:
Integrate $int_0^{pi/2} frac{1}{1+tan^alpha{x}},mathrm{d}x$
4 answers
Evaluate the integral $int^{frac{pi}{2}}_0 frac{sin^3x}{sin^3x+cos^3x},mathrm dx$. [duplicate]
3 answers
How to calculate
$$
intlimits_{0}^{frac{pi}{2}}frac{mathrm{d}x}{1+tan^{a}(x)} ;,
$$
where $a$ is a constant? Any hint will be appreciated.
definite-integrals
$endgroup$
marked as duplicate by lab bhattacharjee, C. Falcon, Claude Leibovici, Lucian, Daniel W. Farlow Jan 28 '17 at 23:29
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Integrate $int_0^{pi/2} frac{1}{1+tan^alpha{x}},mathrm{d}x$
4 answers
Evaluate the integral $int^{frac{pi}{2}}_0 frac{sin^3x}{sin^3x+cos^3x},mathrm dx$. [duplicate]
3 answers
How to calculate
$$
intlimits_{0}^{frac{pi}{2}}frac{mathrm{d}x}{1+tan^{a}(x)} ;,
$$
where $a$ is a constant? Any hint will be appreciated.
definite-integrals
$endgroup$
marked as duplicate by lab bhattacharjee, C. Falcon, Claude Leibovici, Lucian, Daniel W. Farlow Jan 28 '17 at 23:29
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Integrate $int_0^{pi/2} frac{1}{1+tan^alpha{x}},mathrm{d}x$
4 answers
Evaluate the integral $int^{frac{pi}{2}}_0 frac{sin^3x}{sin^3x+cos^3x},mathrm dx$. [duplicate]
3 answers
How to calculate
$$
intlimits_{0}^{frac{pi}{2}}frac{mathrm{d}x}{1+tan^{a}(x)} ;,
$$
where $a$ is a constant? Any hint will be appreciated.
definite-integrals
$endgroup$
This question already has an answer here:
Integrate $int_0^{pi/2} frac{1}{1+tan^alpha{x}},mathrm{d}x$
4 answers
Evaluate the integral $int^{frac{pi}{2}}_0 frac{sin^3x}{sin^3x+cos^3x},mathrm dx$. [duplicate]
3 answers
How to calculate
$$
intlimits_{0}^{frac{pi}{2}}frac{mathrm{d}x}{1+tan^{a}(x)} ;,
$$
where $a$ is a constant? Any hint will be appreciated.
This question already has an answer here:
Integrate $int_0^{pi/2} frac{1}{1+tan^alpha{x}},mathrm{d}x$
4 answers
Evaluate the integral $int^{frac{pi}{2}}_0 frac{sin^3x}{sin^3x+cos^3x},mathrm dx$. [duplicate]
3 answers
definite-integrals
definite-integrals
edited Jan 28 '17 at 12:42


Björn Friedrich
2,70661831
2,70661831
asked Jan 28 '17 at 12:38
Good boyGood boy
562310
562310
marked as duplicate by lab bhattacharjee, C. Falcon, Claude Leibovici, Lucian, Daniel W. Farlow Jan 28 '17 at 23:29
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by lab bhattacharjee, C. Falcon, Claude Leibovici, Lucian, Daniel W. Farlow Jan 28 '17 at 23:29
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n (x)}dxcdots cdots (1)$$
Replace $displaystyle xrightarrow frac{pi}{2}-x$
So $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n left(frac{pi}{2}-x right)}dx = int^{frac{pi}{2}}_{0}frac{1}{1+cot^{n}(x)}cdots cdots (2)$$
So $$2I = int^{frac{pi}{2}}_{0}frac{1+tan^{n}(x)}{1+tan^{n}(x)}dx = frac{pi}{2}Rightarrow I = frac{pi}{4}.$$
$endgroup$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n (x)}dxcdots cdots (1)$$
Replace $displaystyle xrightarrow frac{pi}{2}-x$
So $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n left(frac{pi}{2}-x right)}dx = int^{frac{pi}{2}}_{0}frac{1}{1+cot^{n}(x)}cdots cdots (2)$$
So $$2I = int^{frac{pi}{2}}_{0}frac{1+tan^{n}(x)}{1+tan^{n}(x)}dx = frac{pi}{2}Rightarrow I = frac{pi}{4}.$$
$endgroup$
add a comment |
$begingroup$
Let $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n (x)}dxcdots cdots (1)$$
Replace $displaystyle xrightarrow frac{pi}{2}-x$
So $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n left(frac{pi}{2}-x right)}dx = int^{frac{pi}{2}}_{0}frac{1}{1+cot^{n}(x)}cdots cdots (2)$$
So $$2I = int^{frac{pi}{2}}_{0}frac{1+tan^{n}(x)}{1+tan^{n}(x)}dx = frac{pi}{2}Rightarrow I = frac{pi}{4}.$$
$endgroup$
add a comment |
$begingroup$
Let $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n (x)}dxcdots cdots (1)$$
Replace $displaystyle xrightarrow frac{pi}{2}-x$
So $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n left(frac{pi}{2}-x right)}dx = int^{frac{pi}{2}}_{0}frac{1}{1+cot^{n}(x)}cdots cdots (2)$$
So $$2I = int^{frac{pi}{2}}_{0}frac{1+tan^{n}(x)}{1+tan^{n}(x)}dx = frac{pi}{2}Rightarrow I = frac{pi}{4}.$$
$endgroup$
Let $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n (x)}dxcdots cdots (1)$$
Replace $displaystyle xrightarrow frac{pi}{2}-x$
So $$I = int^{frac{pi}{2}}_{0}frac{1}{1+tan^n left(frac{pi}{2}-x right)}dx = int^{frac{pi}{2}}_{0}frac{1}{1+cot^{n}(x)}cdots cdots (2)$$
So $$2I = int^{frac{pi}{2}}_{0}frac{1+tan^{n}(x)}{1+tan^{n}(x)}dx = frac{pi}{2}Rightarrow I = frac{pi}{4}.$$
answered Jan 28 '17 at 12:56
juantheronjuantheron
34.4k1151143
34.4k1151143
add a comment |
add a comment |