If P1, P2, P3 are altitudes of a triangle ABC from the vertices A, B, C and is the area of the triangle, then...
$begingroup$
If P1, P2, P3 are altitudes of a triangle ABC from the vertices A, B, C and is the area of the triangle , then P^-1+P^-2+P^-3 is equal to
trigonometry
$endgroup$
add a comment |
$begingroup$
If P1, P2, P3 are altitudes of a triangle ABC from the vertices A, B, C and is the area of the triangle , then P^-1+P^-2+P^-3 is equal to
trigonometry
$endgroup$
1
$begingroup$
We have $dfrac12P_1cdot a=triangle$ etc. So, $sumdfrac1{P_1 }=dfrac{sum a}{2triangle}=Rdfrac{sum sin A}{triangle }$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 11:50
$begingroup$
cant able to follow @labbhattacharjee
$endgroup$
– burm1
Aug 25 '14 at 11:58
$begingroup$
1/2 *base *height=area of triangle so you are saying p1= base and height =a?
$endgroup$
– burm1
Aug 25 '14 at 11:59
$begingroup$
rsummation sin a/triangle how
$endgroup$
– burm1
Aug 25 '14 at 12:07
$begingroup$
For future reference, you may take a look at this page to see how to format math on this site.
$endgroup$
– g.kov
Feb 2 at 14:36
add a comment |
$begingroup$
If P1, P2, P3 are altitudes of a triangle ABC from the vertices A, B, C and is the area of the triangle , then P^-1+P^-2+P^-3 is equal to
trigonometry
$endgroup$
If P1, P2, P3 are altitudes of a triangle ABC from the vertices A, B, C and is the area of the triangle , then P^-1+P^-2+P^-3 is equal to
trigonometry
trigonometry
asked Aug 25 '14 at 11:45
burm1burm1
6727
6727
1
$begingroup$
We have $dfrac12P_1cdot a=triangle$ etc. So, $sumdfrac1{P_1 }=dfrac{sum a}{2triangle}=Rdfrac{sum sin A}{triangle }$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 11:50
$begingroup$
cant able to follow @labbhattacharjee
$endgroup$
– burm1
Aug 25 '14 at 11:58
$begingroup$
1/2 *base *height=area of triangle so you are saying p1= base and height =a?
$endgroup$
– burm1
Aug 25 '14 at 11:59
$begingroup$
rsummation sin a/triangle how
$endgroup$
– burm1
Aug 25 '14 at 12:07
$begingroup$
For future reference, you may take a look at this page to see how to format math on this site.
$endgroup$
– g.kov
Feb 2 at 14:36
add a comment |
1
$begingroup$
We have $dfrac12P_1cdot a=triangle$ etc. So, $sumdfrac1{P_1 }=dfrac{sum a}{2triangle}=Rdfrac{sum sin A}{triangle }$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 11:50
$begingroup$
cant able to follow @labbhattacharjee
$endgroup$
– burm1
Aug 25 '14 at 11:58
$begingroup$
1/2 *base *height=area of triangle so you are saying p1= base and height =a?
$endgroup$
– burm1
Aug 25 '14 at 11:59
$begingroup$
rsummation sin a/triangle how
$endgroup$
– burm1
Aug 25 '14 at 12:07
$begingroup$
For future reference, you may take a look at this page to see how to format math on this site.
$endgroup$
– g.kov
Feb 2 at 14:36
1
1
$begingroup$
We have $dfrac12P_1cdot a=triangle$ etc. So, $sumdfrac1{P_1 }=dfrac{sum a}{2triangle}=Rdfrac{sum sin A}{triangle }$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 11:50
$begingroup$
We have $dfrac12P_1cdot a=triangle$ etc. So, $sumdfrac1{P_1 }=dfrac{sum a}{2triangle}=Rdfrac{sum sin A}{triangle }$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 11:50
$begingroup$
cant able to follow @labbhattacharjee
$endgroup$
– burm1
Aug 25 '14 at 11:58
$begingroup$
cant able to follow @labbhattacharjee
$endgroup$
– burm1
Aug 25 '14 at 11:58
$begingroup$
1/2 *base *height=area of triangle so you are saying p1= base and height =a?
$endgroup$
– burm1
Aug 25 '14 at 11:59
$begingroup$
1/2 *base *height=area of triangle so you are saying p1= base and height =a?
$endgroup$
– burm1
Aug 25 '14 at 11:59
$begingroup$
rsummation sin a/triangle how
$endgroup$
– burm1
Aug 25 '14 at 12:07
$begingroup$
rsummation sin a/triangle how
$endgroup$
– burm1
Aug 25 '14 at 12:07
$begingroup$
For future reference, you may take a look at this page to see how to format math on this site.
$endgroup$
– g.kov
Feb 2 at 14:36
$begingroup$
For future reference, you may take a look at this page to see how to format math on this site.
$endgroup$
– g.kov
Feb 2 at 14:36
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Using Area of Triangle in Terms of Side and Altitude formula,
$$triangle=frac12acdot P_1impliesfrac1{P_1}=frac a{2triangle}$$
$$implies sumfrac1{P_1}=frac{a+b+c}{2triangle}$$
Using Area of Triangle in Terms of Inradius formula, $$triangle=rcdot s$$
where $r$ is the inradius and $2s=a+b+c$
$endgroup$
$begingroup$
summation 1/p2=a+b+c/2 triangle
$endgroup$
– burm1
Aug 25 '14 at 13:03
$begingroup$
@burm1, $$frac{a+b+c}2cdotfrac1{triangle}=scdotfrac1{rcdot s}=?$$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:05
$begingroup$
1/r .so 1/r+1/r+1/r =3/r
$endgroup$
– burm1
Aug 25 '14 at 13:10
$begingroup$
@burm1, have you noticed $sum ?$ It should be $dfrac1r$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:11
$begingroup$
yes i for get to include summation of 1/r.then summation of 3/r ?
$endgroup$
– burm1
Aug 25 '14 at 13:13
|
show 8 more comments
$begingroup$
Using Area of triangle in terms of side and altitude formula,
Triangle= 1/2 a. P1=>1/p1=a/2triangle
=> £1/p1=a+b+c/2triangle
Using Area of triangle in terms of inradius formula,
Triangle= r.s
Where r is inradius and
2s=a+b+c
Hope it is useful......
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f908594%2fif-p1-p2-p3-are-altitudes-of-a-triangle-abc-from-the-vertices-a-b-c-and-is-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using Area of Triangle in Terms of Side and Altitude formula,
$$triangle=frac12acdot P_1impliesfrac1{P_1}=frac a{2triangle}$$
$$implies sumfrac1{P_1}=frac{a+b+c}{2triangle}$$
Using Area of Triangle in Terms of Inradius formula, $$triangle=rcdot s$$
where $r$ is the inradius and $2s=a+b+c$
$endgroup$
$begingroup$
summation 1/p2=a+b+c/2 triangle
$endgroup$
– burm1
Aug 25 '14 at 13:03
$begingroup$
@burm1, $$frac{a+b+c}2cdotfrac1{triangle}=scdotfrac1{rcdot s}=?$$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:05
$begingroup$
1/r .so 1/r+1/r+1/r =3/r
$endgroup$
– burm1
Aug 25 '14 at 13:10
$begingroup$
@burm1, have you noticed $sum ?$ It should be $dfrac1r$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:11
$begingroup$
yes i for get to include summation of 1/r.then summation of 3/r ?
$endgroup$
– burm1
Aug 25 '14 at 13:13
|
show 8 more comments
$begingroup$
Using Area of Triangle in Terms of Side and Altitude formula,
$$triangle=frac12acdot P_1impliesfrac1{P_1}=frac a{2triangle}$$
$$implies sumfrac1{P_1}=frac{a+b+c}{2triangle}$$
Using Area of Triangle in Terms of Inradius formula, $$triangle=rcdot s$$
where $r$ is the inradius and $2s=a+b+c$
$endgroup$
$begingroup$
summation 1/p2=a+b+c/2 triangle
$endgroup$
– burm1
Aug 25 '14 at 13:03
$begingroup$
@burm1, $$frac{a+b+c}2cdotfrac1{triangle}=scdotfrac1{rcdot s}=?$$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:05
$begingroup$
1/r .so 1/r+1/r+1/r =3/r
$endgroup$
– burm1
Aug 25 '14 at 13:10
$begingroup$
@burm1, have you noticed $sum ?$ It should be $dfrac1r$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:11
$begingroup$
yes i for get to include summation of 1/r.then summation of 3/r ?
$endgroup$
– burm1
Aug 25 '14 at 13:13
|
show 8 more comments
$begingroup$
Using Area of Triangle in Terms of Side and Altitude formula,
$$triangle=frac12acdot P_1impliesfrac1{P_1}=frac a{2triangle}$$
$$implies sumfrac1{P_1}=frac{a+b+c}{2triangle}$$
Using Area of Triangle in Terms of Inradius formula, $$triangle=rcdot s$$
where $r$ is the inradius and $2s=a+b+c$
$endgroup$
Using Area of Triangle in Terms of Side and Altitude formula,
$$triangle=frac12acdot P_1impliesfrac1{P_1}=frac a{2triangle}$$
$$implies sumfrac1{P_1}=frac{a+b+c}{2triangle}$$
Using Area of Triangle in Terms of Inradius formula, $$triangle=rcdot s$$
where $r$ is the inradius and $2s=a+b+c$
answered Aug 25 '14 at 12:36
lab bhattacharjeelab bhattacharjee
228k15159279
228k15159279
$begingroup$
summation 1/p2=a+b+c/2 triangle
$endgroup$
– burm1
Aug 25 '14 at 13:03
$begingroup$
@burm1, $$frac{a+b+c}2cdotfrac1{triangle}=scdotfrac1{rcdot s}=?$$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:05
$begingroup$
1/r .so 1/r+1/r+1/r =3/r
$endgroup$
– burm1
Aug 25 '14 at 13:10
$begingroup$
@burm1, have you noticed $sum ?$ It should be $dfrac1r$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:11
$begingroup$
yes i for get to include summation of 1/r.then summation of 3/r ?
$endgroup$
– burm1
Aug 25 '14 at 13:13
|
show 8 more comments
$begingroup$
summation 1/p2=a+b+c/2 triangle
$endgroup$
– burm1
Aug 25 '14 at 13:03
$begingroup$
@burm1, $$frac{a+b+c}2cdotfrac1{triangle}=scdotfrac1{rcdot s}=?$$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:05
$begingroup$
1/r .so 1/r+1/r+1/r =3/r
$endgroup$
– burm1
Aug 25 '14 at 13:10
$begingroup$
@burm1, have you noticed $sum ?$ It should be $dfrac1r$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:11
$begingroup$
yes i for get to include summation of 1/r.then summation of 3/r ?
$endgroup$
– burm1
Aug 25 '14 at 13:13
$begingroup$
summation 1/p2=a+b+c/2 triangle
$endgroup$
– burm1
Aug 25 '14 at 13:03
$begingroup$
summation 1/p2=a+b+c/2 triangle
$endgroup$
– burm1
Aug 25 '14 at 13:03
$begingroup$
@burm1, $$frac{a+b+c}2cdotfrac1{triangle}=scdotfrac1{rcdot s}=?$$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:05
$begingroup$
@burm1, $$frac{a+b+c}2cdotfrac1{triangle}=scdotfrac1{rcdot s}=?$$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:05
$begingroup$
1/r .so 1/r+1/r+1/r =3/r
$endgroup$
– burm1
Aug 25 '14 at 13:10
$begingroup$
1/r .so 1/r+1/r+1/r =3/r
$endgroup$
– burm1
Aug 25 '14 at 13:10
$begingroup$
@burm1, have you noticed $sum ?$ It should be $dfrac1r$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:11
$begingroup$
@burm1, have you noticed $sum ?$ It should be $dfrac1r$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 13:11
$begingroup$
yes i for get to include summation of 1/r.then summation of 3/r ?
$endgroup$
– burm1
Aug 25 '14 at 13:13
$begingroup$
yes i for get to include summation of 1/r.then summation of 3/r ?
$endgroup$
– burm1
Aug 25 '14 at 13:13
|
show 8 more comments
$begingroup$
Using Area of triangle in terms of side and altitude formula,
Triangle= 1/2 a. P1=>1/p1=a/2triangle
=> £1/p1=a+b+c/2triangle
Using Area of triangle in terms of inradius formula,
Triangle= r.s
Where r is inradius and
2s=a+b+c
Hope it is useful......
$endgroup$
add a comment |
$begingroup$
Using Area of triangle in terms of side and altitude formula,
Triangle= 1/2 a. P1=>1/p1=a/2triangle
=> £1/p1=a+b+c/2triangle
Using Area of triangle in terms of inradius formula,
Triangle= r.s
Where r is inradius and
2s=a+b+c
Hope it is useful......
$endgroup$
add a comment |
$begingroup$
Using Area of triangle in terms of side and altitude formula,
Triangle= 1/2 a. P1=>1/p1=a/2triangle
=> £1/p1=a+b+c/2triangle
Using Area of triangle in terms of inradius formula,
Triangle= r.s
Where r is inradius and
2s=a+b+c
Hope it is useful......
$endgroup$
Using Area of triangle in terms of side and altitude formula,
Triangle= 1/2 a. P1=>1/p1=a/2triangle
=> £1/p1=a+b+c/2triangle
Using Area of triangle in terms of inradius formula,
Triangle= r.s
Where r is inradius and
2s=a+b+c
Hope it is useful......
answered Feb 2 at 14:15
Tharuni chinniTharuni chinni
1
1
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f908594%2fif-p1-p2-p3-are-altitudes-of-a-triangle-abc-from-the-vertices-a-b-c-and-is-t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
We have $dfrac12P_1cdot a=triangle$ etc. So, $sumdfrac1{P_1 }=dfrac{sum a}{2triangle}=Rdfrac{sum sin A}{triangle }$
$endgroup$
– lab bhattacharjee
Aug 25 '14 at 11:50
$begingroup$
cant able to follow @labbhattacharjee
$endgroup$
– burm1
Aug 25 '14 at 11:58
$begingroup$
1/2 *base *height=area of triangle so you are saying p1= base and height =a?
$endgroup$
– burm1
Aug 25 '14 at 11:59
$begingroup$
rsummation sin a/triangle how
$endgroup$
– burm1
Aug 25 '14 at 12:07
$begingroup$
For future reference, you may take a look at this page to see how to format math on this site.
$endgroup$
– g.kov
Feb 2 at 14:36