Interlacing randomly a tf.Dataset with another tf.Dataset





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







1















I have two datasets:



main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100)))
backgroud_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4])


I want a batch interleaving main_ds and backgroud_ds data randomly. For instance, a batch of size 10 should look like:



[3, 1017, 1039, 3, 2, 1024, 4, 1, 1053, 4]


I tried the following:



def interlace_background(image, background):
return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)

background_ds = background_ds.shuffle(10).repeat(-1)
background_it = background_ds.make_initializable_iterator()
background_next = background_it.get_next()

main_ds = main_ds.shuffle(10)
.repeat(-1)
.map(lambda x: interlace_background(x, background_next))
.batch(10)
main_it = main_ds.make_initializable_iterator()
main_next = main_it.get_next()


but I get a fixed background across all batches:



batch 0: [   3 1006    3 1001    3 1005 1015 1000    3    3]
batch 1: [1007 3 1012 1018 1013 3 1008 1019 3 3]
batch 2: [1016 3 1025 3 3 3 1021 3 3 1035]
batch 3: [1038 3 3 1023 1020 3 3 1046 1034 1047]
batch 4: [ 3 3 1039 3 3 3 3 3 1053 3]


Why is the background fixed (cf. above where background is always 3) and how could I solve this?



Fully reproducible code below:



import tensorflow as tf
import numpy as np

def interlace_background(image, background):
return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)

main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100)))
background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4])

background_ds = background_ds.shuffle(10).repeat(-1)
background_it = background_ds.make_initializable_iterator()
background_next = background_it.get_next()

main_ds = main_ds.shuffle(10)
.repeat(-1)
.map(lambda x: interlace_background(x, background_next))
.batch(10)
main_it = main_ds.make_initializable_iterator()
main_next = main_it.get_next()

with tf.Session() as sess:
sess.run(background_it.initializer)
sess.run(main_it.initializer)
for i in range(5):
print('batch %i' % i, sess.run(main_next))









share|improve this question





























    1















    I have two datasets:



    main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100)))
    backgroud_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4])


    I want a batch interleaving main_ds and backgroud_ds data randomly. For instance, a batch of size 10 should look like:



    [3, 1017, 1039, 3, 2, 1024, 4, 1, 1053, 4]


    I tried the following:



    def interlace_background(image, background):
    return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)

    background_ds = background_ds.shuffle(10).repeat(-1)
    background_it = background_ds.make_initializable_iterator()
    background_next = background_it.get_next()

    main_ds = main_ds.shuffle(10)
    .repeat(-1)
    .map(lambda x: interlace_background(x, background_next))
    .batch(10)
    main_it = main_ds.make_initializable_iterator()
    main_next = main_it.get_next()


    but I get a fixed background across all batches:



    batch 0: [   3 1006    3 1001    3 1005 1015 1000    3    3]
    batch 1: [1007 3 1012 1018 1013 3 1008 1019 3 3]
    batch 2: [1016 3 1025 3 3 3 1021 3 3 1035]
    batch 3: [1038 3 3 1023 1020 3 3 1046 1034 1047]
    batch 4: [ 3 3 1039 3 3 3 3 3 1053 3]


    Why is the background fixed (cf. above where background is always 3) and how could I solve this?



    Fully reproducible code below:



    import tensorflow as tf
    import numpy as np

    def interlace_background(image, background):
    return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)

    main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100)))
    background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4])

    background_ds = background_ds.shuffle(10).repeat(-1)
    background_it = background_ds.make_initializable_iterator()
    background_next = background_it.get_next()

    main_ds = main_ds.shuffle(10)
    .repeat(-1)
    .map(lambda x: interlace_background(x, background_next))
    .batch(10)
    main_it = main_ds.make_initializable_iterator()
    main_next = main_it.get_next()

    with tf.Session() as sess:
    sess.run(background_it.initializer)
    sess.run(main_it.initializer)
    for i in range(5):
    print('batch %i' % i, sess.run(main_next))









    share|improve this question

























      1












      1








      1








      I have two datasets:



      main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100)))
      backgroud_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4])


      I want a batch interleaving main_ds and backgroud_ds data randomly. For instance, a batch of size 10 should look like:



      [3, 1017, 1039, 3, 2, 1024, 4, 1, 1053, 4]


      I tried the following:



      def interlace_background(image, background):
      return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)

      background_ds = background_ds.shuffle(10).repeat(-1)
      background_it = background_ds.make_initializable_iterator()
      background_next = background_it.get_next()

      main_ds = main_ds.shuffle(10)
      .repeat(-1)
      .map(lambda x: interlace_background(x, background_next))
      .batch(10)
      main_it = main_ds.make_initializable_iterator()
      main_next = main_it.get_next()


      but I get a fixed background across all batches:



      batch 0: [   3 1006    3 1001    3 1005 1015 1000    3    3]
      batch 1: [1007 3 1012 1018 1013 3 1008 1019 3 3]
      batch 2: [1016 3 1025 3 3 3 1021 3 3 1035]
      batch 3: [1038 3 3 1023 1020 3 3 1046 1034 1047]
      batch 4: [ 3 3 1039 3 3 3 3 3 1053 3]


      Why is the background fixed (cf. above where background is always 3) and how could I solve this?



      Fully reproducible code below:



      import tensorflow as tf
      import numpy as np

      def interlace_background(image, background):
      return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)

      main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100)))
      background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4])

      background_ds = background_ds.shuffle(10).repeat(-1)
      background_it = background_ds.make_initializable_iterator()
      background_next = background_it.get_next()

      main_ds = main_ds.shuffle(10)
      .repeat(-1)
      .map(lambda x: interlace_background(x, background_next))
      .batch(10)
      main_it = main_ds.make_initializable_iterator()
      main_next = main_it.get_next()

      with tf.Session() as sess:
      sess.run(background_it.initializer)
      sess.run(main_it.initializer)
      for i in range(5):
      print('batch %i' % i, sess.run(main_next))









      share|improve this question














      I have two datasets:



      main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100)))
      backgroud_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4])


      I want a batch interleaving main_ds and backgroud_ds data randomly. For instance, a batch of size 10 should look like:



      [3, 1017, 1039, 3, 2, 1024, 4, 1, 1053, 4]


      I tried the following:



      def interlace_background(image, background):
      return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)

      background_ds = background_ds.shuffle(10).repeat(-1)
      background_it = background_ds.make_initializable_iterator()
      background_next = background_it.get_next()

      main_ds = main_ds.shuffle(10)
      .repeat(-1)
      .map(lambda x: interlace_background(x, background_next))
      .batch(10)
      main_it = main_ds.make_initializable_iterator()
      main_next = main_it.get_next()


      but I get a fixed background across all batches:



      batch 0: [   3 1006    3 1001    3 1005 1015 1000    3    3]
      batch 1: [1007 3 1012 1018 1013 3 1008 1019 3 3]
      batch 2: [1016 3 1025 3 3 3 1021 3 3 1035]
      batch 3: [1038 3 3 1023 1020 3 3 1046 1034 1047]
      batch 4: [ 3 3 1039 3 3 3 3 3 1053 3]


      Why is the background fixed (cf. above where background is always 3) and how could I solve this?



      Fully reproducible code below:



      import tensorflow as tf
      import numpy as np

      def interlace_background(image, background):
      return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)

      main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100)))
      background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4])

      background_ds = background_ds.shuffle(10).repeat(-1)
      background_it = background_ds.make_initializable_iterator()
      background_next = background_it.get_next()

      main_ds = main_ds.shuffle(10)
      .repeat(-1)
      .map(lambda x: interlace_background(x, background_next))
      .batch(10)
      main_it = main_ds.make_initializable_iterator()
      main_next = main_it.get_next()

      with tf.Session() as sess:
      sess.run(background_it.initializer)
      sess.run(main_it.initializer)
      for i in range(5):
      print('batch %i' % i, sess.run(main_next))






      python tensorflow






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Jan 3 at 15:16









      BiBiBiBi

      1,89911438




      1,89911438
























          1 Answer
          1






          active

          oldest

          votes


















          1














          You can do the same thing with Dataset.zip() and Dataset.map().



          Here is the code:



          import tensorflow as tf

          def interlace_background(image, background):
          return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)


          main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100))).shuffle(100)
          background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4]).shuffle(4)

          new_ds = tf.data.Dataset
          .zip((main_ds, background_ds))
          .repeat(-1)
          .map(lambda x, y: interlace_background(x, y))
          .batch(10)

          iterator = new_ds.make_initializable_iterator()
          next_item = iterator.get_next()

          with tf.Session() as sess:
          sess.run(iterator.initializer)
          for i in range(5):
          print('batch %i' % i, sess.run(next_item))


          Output:



          batch 0 [1065    2    4    1    2    4    1 1036 1072 1020]
          batch 1 [ 4 3 2 1057 1 4 2 1077 3 1]
          batch 2 [ 3 1044 1042 1049 1029 1 3 1069 1018 3]
          batch 3 [ 2 4 1089 1094 2 1022 1041 1006 1 3]
          batch 4 [1079 2 1 3 1023 1042 4 1018 1054 4]





          share|improve this answer


























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54025069%2finterlacing-randomly-a-tf-dataset-with-another-tf-dataset%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            You can do the same thing with Dataset.zip() and Dataset.map().



            Here is the code:



            import tensorflow as tf

            def interlace_background(image, background):
            return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)


            main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100))).shuffle(100)
            background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4]).shuffle(4)

            new_ds = tf.data.Dataset
            .zip((main_ds, background_ds))
            .repeat(-1)
            .map(lambda x, y: interlace_background(x, y))
            .batch(10)

            iterator = new_ds.make_initializable_iterator()
            next_item = iterator.get_next()

            with tf.Session() as sess:
            sess.run(iterator.initializer)
            for i in range(5):
            print('batch %i' % i, sess.run(next_item))


            Output:



            batch 0 [1065    2    4    1    2    4    1 1036 1072 1020]
            batch 1 [ 4 3 2 1057 1 4 2 1077 3 1]
            batch 2 [ 3 1044 1042 1049 1029 1 3 1069 1018 3]
            batch 3 [ 2 4 1089 1094 2 1022 1041 1006 1 3]
            batch 4 [1079 2 1 3 1023 1042 4 1018 1054 4]





            share|improve this answer






























              1














              You can do the same thing with Dataset.zip() and Dataset.map().



              Here is the code:



              import tensorflow as tf

              def interlace_background(image, background):
              return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)


              main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100))).shuffle(100)
              background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4]).shuffle(4)

              new_ds = tf.data.Dataset
              .zip((main_ds, background_ds))
              .repeat(-1)
              .map(lambda x, y: interlace_background(x, y))
              .batch(10)

              iterator = new_ds.make_initializable_iterator()
              next_item = iterator.get_next()

              with tf.Session() as sess:
              sess.run(iterator.initializer)
              for i in range(5):
              print('batch %i' % i, sess.run(next_item))


              Output:



              batch 0 [1065    2    4    1    2    4    1 1036 1072 1020]
              batch 1 [ 4 3 2 1057 1 4 2 1077 3 1]
              batch 2 [ 3 1044 1042 1049 1029 1 3 1069 1018 3]
              batch 3 [ 2 4 1089 1094 2 1022 1041 1006 1 3]
              batch 4 [1079 2 1 3 1023 1042 4 1018 1054 4]





              share|improve this answer




























                1












                1








                1







                You can do the same thing with Dataset.zip() and Dataset.map().



                Here is the code:



                import tensorflow as tf

                def interlace_background(image, background):
                return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)


                main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100))).shuffle(100)
                background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4]).shuffle(4)

                new_ds = tf.data.Dataset
                .zip((main_ds, background_ds))
                .repeat(-1)
                .map(lambda x, y: interlace_background(x, y))
                .batch(10)

                iterator = new_ds.make_initializable_iterator()
                next_item = iterator.get_next()

                with tf.Session() as sess:
                sess.run(iterator.initializer)
                for i in range(5):
                print('batch %i' % i, sess.run(next_item))


                Output:



                batch 0 [1065    2    4    1    2    4    1 1036 1072 1020]
                batch 1 [ 4 3 2 1057 1 4 2 1077 3 1]
                batch 2 [ 3 1044 1042 1049 1029 1 3 1069 1018 3]
                batch 3 [ 2 4 1089 1094 2 1022 1041 1006 1 3]
                batch 4 [1079 2 1 3 1023 1042 4 1018 1054 4]





                share|improve this answer















                You can do the same thing with Dataset.zip() and Dataset.map().



                Here is the code:



                import tensorflow as tf

                def interlace_background(image, background):
                return tf.cond(tf.random_uniform() < .5, lambda: image, lambda: background)


                main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100))).shuffle(100)
                background_ds = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4]).shuffle(4)

                new_ds = tf.data.Dataset
                .zip((main_ds, background_ds))
                .repeat(-1)
                .map(lambda x, y: interlace_background(x, y))
                .batch(10)

                iterator = new_ds.make_initializable_iterator()
                next_item = iterator.get_next()

                with tf.Session() as sess:
                sess.run(iterator.initializer)
                for i in range(5):
                print('batch %i' % i, sess.run(next_item))


                Output:



                batch 0 [1065    2    4    1    2    4    1 1036 1072 1020]
                batch 1 [ 4 3 2 1057 1 4 2 1077 3 1]
                batch 2 [ 3 1044 1042 1049 1029 1 3 1069 1018 3]
                batch 3 [ 2 4 1089 1094 2 1022 1041 1006 1 3]
                batch 4 [1079 2 1 3 1023 1042 4 1018 1054 4]






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Jan 3 at 16:04

























                answered Jan 3 at 15:38









                AmirAmir

                8,12774277




                8,12774277
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54025069%2finterlacing-randomly-a-tf-dataset-with-another-tf-dataset%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith