Is it possible to break $f(z)=e^{z^e}$ into real and complex parts?












2












$begingroup$


Example: $h(z)=z^2$
$$h(z)=f(x+iy)=(x+iy)^2$$
$$=x^2-y^2+i(2xy)$$



I am wondering if I could do the same for $f(z)=e^{z^e}$. Any help would be greatly appreciated. Thanks.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Example: $h(z)=z^2$
    $$h(z)=f(x+iy)=(x+iy)^2$$
    $$=x^2-y^2+i(2xy)$$



    I am wondering if I could do the same for $f(z)=e^{z^e}$. Any help would be greatly appreciated. Thanks.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Example: $h(z)=z^2$
      $$h(z)=f(x+iy)=(x+iy)^2$$
      $$=x^2-y^2+i(2xy)$$



      I am wondering if I could do the same for $f(z)=e^{z^e}$. Any help would be greatly appreciated. Thanks.










      share|cite|improve this question









      $endgroup$




      Example: $h(z)=z^2$
      $$h(z)=f(x+iy)=(x+iy)^2$$
      $$=x^2-y^2+i(2xy)$$



      I am wondering if I could do the same for $f(z)=e^{z^e}$. Any help would be greatly appreciated. Thanks.







      complex-analysis complex-numbers






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 2 at 12:15









      LokLok

      404




      404






















          3 Answers
          3






          active

          oldest

          votes


















          1












          $begingroup$

          First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
          $$z^e = e^{e log z} = e^{e (log r + i theta)}$$
          where, for the sake of simplicity, I used polar coordinates.



          Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
          Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
          and, using again Euler's formula, we get:
          $$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
            $$
            z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
            $$



            If you are ok with that, then
            $$
            e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
            +isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
            $$



            If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Maple says
              $$
              expleft(z^rm{e}right)
              ={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
              rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
              }+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
              right) right) right)
              \+i{{rm e}^{ left( {x}^{2}+{y}^{2}
              right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
              right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
              sin left( {rm e}arctan left( y,x right) right) right)
              $$






              share|cite|improve this answer









              $endgroup$














                Your Answer








                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097230%2fis-it-possible-to-break-fz-eze-into-real-and-complex-parts%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                1












                $begingroup$

                First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
                $$z^e = e^{e log z} = e^{e (log r + i theta)}$$
                where, for the sake of simplicity, I used polar coordinates.



                Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
                Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
                and, using again Euler's formula, we get:
                $$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
                  $$z^e = e^{e log z} = e^{e (log r + i theta)}$$
                  where, for the sake of simplicity, I used polar coordinates.



                  Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
                  Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
                  and, using again Euler's formula, we get:
                  $$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
                    $$z^e = e^{e log z} = e^{e (log r + i theta)}$$
                    where, for the sake of simplicity, I used polar coordinates.



                    Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
                    Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
                    and, using again Euler's formula, we get:
                    $$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$






                    share|cite|improve this answer









                    $endgroup$



                    First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
                    $$z^e = e^{e log z} = e^{e (log r + i theta)}$$
                    where, for the sake of simplicity, I used polar coordinates.



                    Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
                    Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
                    and, using again Euler's formula, we get:
                    $$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Feb 2 at 12:43









                    HarnakHarnak

                    1,369512




                    1,369512























                        2












                        $begingroup$

                        The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
                        $$
                        z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
                        $$



                        If you are ok with that, then
                        $$
                        e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
                        +isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
                        $$



                        If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.






                        share|cite|improve this answer









                        $endgroup$


















                          2












                          $begingroup$

                          The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
                          $$
                          z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
                          $$



                          If you are ok with that, then
                          $$
                          e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
                          +isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
                          $$



                          If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.






                          share|cite|improve this answer









                          $endgroup$
















                            2












                            2








                            2





                            $begingroup$

                            The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
                            $$
                            z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
                            $$



                            If you are ok with that, then
                            $$
                            e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
                            +isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
                            $$



                            If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.






                            share|cite|improve this answer









                            $endgroup$



                            The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
                            $$
                            z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
                            $$



                            If you are ok with that, then
                            $$
                            e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
                            +isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
                            $$



                            If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 2 at 12:35









                            Vasily MitchVasily Mitch

                            2,6791312




                            2,6791312























                                1












                                $begingroup$

                                Maple says
                                $$
                                expleft(z^rm{e}right)
                                ={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
                                rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
                                }+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
                                right) right) right)
                                \+i{{rm e}^{ left( {x}^{2}+{y}^{2}
                                right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
                                right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
                                sin left( {rm e}arctan left( y,x right) right) right)
                                $$






                                share|cite|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$

                                  Maple says
                                  $$
                                  expleft(z^rm{e}right)
                                  ={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
                                  rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
                                  }+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
                                  right) right) right)
                                  \+i{{rm e}^{ left( {x}^{2}+{y}^{2}
                                  right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
                                  right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
                                  sin left( {rm e}arctan left( y,x right) right) right)
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    Maple says
                                    $$
                                    expleft(z^rm{e}right)
                                    ={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
                                    rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
                                    }+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
                                    right) right) right)
                                    \+i{{rm e}^{ left( {x}^{2}+{y}^{2}
                                    right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
                                    right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
                                    sin left( {rm e}arctan left( y,x right) right) right)
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$



                                    Maple says
                                    $$
                                    expleft(z^rm{e}right)
                                    ={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
                                    rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
                                    }+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
                                    right) right) right)
                                    \+i{{rm e}^{ left( {x}^{2}+{y}^{2}
                                    right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
                                    right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
                                    sin left( {rm e}arctan left( y,x right) right) right)
                                    $$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Feb 2 at 12:45









                                    GEdgarGEdgar

                                    63.5k269175




                                    63.5k269175






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097230%2fis-it-possible-to-break-fz-eze-into-real-and-complex-parts%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                        Npm cannot find a required file even through it is in the searched directory