Is it possible to break $f(z)=e^{z^e}$ into real and complex parts?
$begingroup$
Example: $h(z)=z^2$
$$h(z)=f(x+iy)=(x+iy)^2$$
$$=x^2-y^2+i(2xy)$$
I am wondering if I could do the same for $f(z)=e^{z^e}$. Any help would be greatly appreciated. Thanks.
complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
Example: $h(z)=z^2$
$$h(z)=f(x+iy)=(x+iy)^2$$
$$=x^2-y^2+i(2xy)$$
I am wondering if I could do the same for $f(z)=e^{z^e}$. Any help would be greatly appreciated. Thanks.
complex-analysis complex-numbers
$endgroup$
add a comment |
$begingroup$
Example: $h(z)=z^2$
$$h(z)=f(x+iy)=(x+iy)^2$$
$$=x^2-y^2+i(2xy)$$
I am wondering if I could do the same for $f(z)=e^{z^e}$. Any help would be greatly appreciated. Thanks.
complex-analysis complex-numbers
$endgroup$
Example: $h(z)=z^2$
$$h(z)=f(x+iy)=(x+iy)^2$$
$$=x^2-y^2+i(2xy)$$
I am wondering if I could do the same for $f(z)=e^{z^e}$. Any help would be greatly appreciated. Thanks.
complex-analysis complex-numbers
complex-analysis complex-numbers
asked Feb 2 at 12:15


LokLok
404
404
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
$$z^e = e^{e log z} = e^{e (log r + i theta)}$$
where, for the sake of simplicity, I used polar coordinates.
Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
and, using again Euler's formula, we get:
$$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$
$endgroup$
add a comment |
$begingroup$
The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
$$
z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
$$
If you are ok with that, then
$$
e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
+isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
$$
If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.
$endgroup$
add a comment |
$begingroup$
Maple says
$$
expleft(z^rm{e}right)
={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
}+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
right) right) right)
\+i{{rm e}^{ left( {x}^{2}+{y}^{2}
right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
sin left( {rm e}arctan left( y,x right) right) right)
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097230%2fis-it-possible-to-break-fz-eze-into-real-and-complex-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
$$z^e = e^{e log z} = e^{e (log r + i theta)}$$
where, for the sake of simplicity, I used polar coordinates.
Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
and, using again Euler's formula, we get:
$$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$
$endgroup$
add a comment |
$begingroup$
First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
$$z^e = e^{e log z} = e^{e (log r + i theta)}$$
where, for the sake of simplicity, I used polar coordinates.
Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
and, using again Euler's formula, we get:
$$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$
$endgroup$
add a comment |
$begingroup$
First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
$$z^e = e^{e log z} = e^{e (log r + i theta)}$$
where, for the sake of simplicity, I used polar coordinates.
Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
and, using again Euler's formula, we get:
$$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$
$endgroup$
First, remember that $w^z = e ^ {z log w}$, for complex numbers, is not defined unambiguously because that depends on the choice of the logarithm. Let us agree to use the principal value as the logarithm. Then we have:
$$z^e = e^{e log z} = e^{e (log r + i theta)}$$
where, for the sake of simplicity, I used polar coordinates.
Remembering Euler's fomula, last expression is equal to $$e^{e log r}(cos{etheta} + i sin{ etheta})$$
Now, $$e^{z^e}=e ^ {e^{e log r} (cos{e theta} + i sin {e theta})}$$
and, using again Euler's formula, we get:
$$e^{e^{e log r} cos{e theta}}bigg(cos{(e^{e log r}sin{etheta}) + i sin(e^{e log r} sin {etheta})bigg)}$$
answered Feb 2 at 12:43
HarnakHarnak
1,369512
1,369512
add a comment |
add a comment |
$begingroup$
The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
$$
z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
$$
If you are ok with that, then
$$
e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
+isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
$$
If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.
$endgroup$
add a comment |
$begingroup$
The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
$$
z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
$$
If you are ok with that, then
$$
e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
+isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
$$
If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.
$endgroup$
add a comment |
$begingroup$
The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
$$
z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
$$
If you are ok with that, then
$$
e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
+isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
$$
If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.
$endgroup$
The problem with $z^e$ is that since $e$ is irrational, this function has infinitely many values. If $z=r(cosvarphi + isinvarphi)$,
$$
z^e = r^e(cos(evarphi+2epi n)+isin(evarphi+2epi n)), qquad ninmathbb Z
$$
If you are ok with that, then
$$
e^{z^e} = e^{r^ecos(evarphi+2epi n)}Big(cosleft(r^esin(evarphi+2epi n)right)
+isinleft(r^esin(evarphi+2epi n)right)Big),qquad ninmathbb Z
$$
If we want to choose principal branch of $log z$, then $varphi=arg z$ and $n=0$.
answered Feb 2 at 12:35
Vasily MitchVasily Mitch
2,6791312
2,6791312
add a comment |
add a comment |
$begingroup$
Maple says
$$
expleft(z^rm{e}right)
={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
}+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
right) right) right)
\+i{{rm e}^{ left( {x}^{2}+{y}^{2}
right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
sin left( {rm e}arctan left( y,x right) right) right)
$$
$endgroup$
add a comment |
$begingroup$
Maple says
$$
expleft(z^rm{e}right)
={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
}+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
right) right) right)
\+i{{rm e}^{ left( {x}^{2}+{y}^{2}
right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
sin left( {rm e}arctan left( y,x right) right) right)
$$
$endgroup$
add a comment |
$begingroup$
Maple says
$$
expleft(z^rm{e}right)
={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
}+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
right) right) right)
\+i{{rm e}^{ left( {x}^{2}+{y}^{2}
right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
sin left( {rm e}arctan left( y,x right) right) right)
$$
$endgroup$
Maple says
$$
expleft(z^rm{e}right)
={{rm e}^{ left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}cos left( {
rm e}arctan left( y,x right) right) }}cos left( left( {x}^{2
}+{y}^{2} right) ^{{rm e}/2}sin left( {rm e}arctan left( y,x
right) right) right)
\+i{{rm e}^{ left( {x}^{2}+{y}^{2}
right) ^{{rm e}/2}cos left( {rm e}arctan left( y,x right)
right) }}sin left( left( {x}^{2}+{y}^{2} right) ^{{rm e}/2}
sin left( {rm e}arctan left( y,x right) right) right)
$$
answered Feb 2 at 12:45
GEdgarGEdgar
63.5k269175
63.5k269175
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097230%2fis-it-possible-to-break-fz-eze-into-real-and-complex-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown