Laplace transform of products of Marcum Q, Bessel J and power functions
$begingroup$
I want to solve this integral likes:
$int_{0}^{infty} Q_{mu_1}left( alpha, betasqrt{t}right) t^{frac{mu_2-1}{2}}J_{mu_2-1} left(csqrt{t}right) exp(-pt)dt$
where $Q(cdot)$ is generalized Marcum-Q function, and $J(cdot)$ is the Bessel function of the first kind. All parameters are real.
I have tried to transform $J$ to $I$ using $I_{nu}(x) = i^{-nu} J_{nu}(ix)$. Then I want to use the reference,
but it not works.
Am I wrong? Can anybody help me to solve this problem?
integration laplace-transform bessel-functions
$endgroup$
add a comment |
$begingroup$
I want to solve this integral likes:
$int_{0}^{infty} Q_{mu_1}left( alpha, betasqrt{t}right) t^{frac{mu_2-1}{2}}J_{mu_2-1} left(csqrt{t}right) exp(-pt)dt$
where $Q(cdot)$ is generalized Marcum-Q function, and $J(cdot)$ is the Bessel function of the first kind. All parameters are real.
I have tried to transform $J$ to $I$ using $I_{nu}(x) = i^{-nu} J_{nu}(ix)$. Then I want to use the reference,
but it not works.
Am I wrong? Can anybody help me to solve this problem?
integration laplace-transform bessel-functions
$endgroup$
add a comment |
$begingroup$
I want to solve this integral likes:
$int_{0}^{infty} Q_{mu_1}left( alpha, betasqrt{t}right) t^{frac{mu_2-1}{2}}J_{mu_2-1} left(csqrt{t}right) exp(-pt)dt$
where $Q(cdot)$ is generalized Marcum-Q function, and $J(cdot)$ is the Bessel function of the first kind. All parameters are real.
I have tried to transform $J$ to $I$ using $I_{nu}(x) = i^{-nu} J_{nu}(ix)$. Then I want to use the reference,
but it not works.
Am I wrong? Can anybody help me to solve this problem?
integration laplace-transform bessel-functions
$endgroup$
I want to solve this integral likes:
$int_{0}^{infty} Q_{mu_1}left( alpha, betasqrt{t}right) t^{frac{mu_2-1}{2}}J_{mu_2-1} left(csqrt{t}right) exp(-pt)dt$
where $Q(cdot)$ is generalized Marcum-Q function, and $J(cdot)$ is the Bessel function of the first kind. All parameters are real.
I have tried to transform $J$ to $I$ using $I_{nu}(x) = i^{-nu} J_{nu}(ix)$. Then I want to use the reference,
but it not works.
Am I wrong? Can anybody help me to solve this problem?
integration laplace-transform bessel-functions
integration laplace-transform bessel-functions
asked Feb 1 at 7:52


Tianji ShenTianji Shen
11
11
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095950%2flaplace-transform-of-products-of-marcum-q-bessel-j-and-power-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3095950%2flaplace-transform-of-products-of-marcum-q-bessel-j-and-power-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown