Limit to infinity of polynomial fraction
$begingroup$
I'm trying to solve for the function this limit approaches:
$$lim_{xto infty} frac{x^2}{x-2}$$
From graphing the function online I know it approaches $y=x+2$, but I am just unsure how to go about proving it. I can understand why it approaches $y=x$ but I'm unsure as to where the $+2$ comes from.
Any help would be greatly appreciated
limits polynomials graphing-functions
$endgroup$
add a comment |
$begingroup$
I'm trying to solve for the function this limit approaches:
$$lim_{xto infty} frac{x^2}{x-2}$$
From graphing the function online I know it approaches $y=x+2$, but I am just unsure how to go about proving it. I can understand why it approaches $y=x$ but I'm unsure as to where the $+2$ comes from.
Any help would be greatly appreciated
limits polynomials graphing-functions
$endgroup$
2
$begingroup$
$frac{x^2}{x-2}=x+frac{4}{x-2}+2$
$endgroup$
– coreyman317
Feb 3 at 2:08
add a comment |
$begingroup$
I'm trying to solve for the function this limit approaches:
$$lim_{xto infty} frac{x^2}{x-2}$$
From graphing the function online I know it approaches $y=x+2$, but I am just unsure how to go about proving it. I can understand why it approaches $y=x$ but I'm unsure as to where the $+2$ comes from.
Any help would be greatly appreciated
limits polynomials graphing-functions
$endgroup$
I'm trying to solve for the function this limit approaches:
$$lim_{xto infty} frac{x^2}{x-2}$$
From graphing the function online I know it approaches $y=x+2$, but I am just unsure how to go about proving it. I can understand why it approaches $y=x$ but I'm unsure as to where the $+2$ comes from.
Any help would be greatly appreciated
limits polynomials graphing-functions
limits polynomials graphing-functions
asked Feb 3 at 2:01


ultralightultralight
806
806
2
$begingroup$
$frac{x^2}{x-2}=x+frac{4}{x-2}+2$
$endgroup$
– coreyman317
Feb 3 at 2:08
add a comment |
2
$begingroup$
$frac{x^2}{x-2}=x+frac{4}{x-2}+2$
$endgroup$
– coreyman317
Feb 3 at 2:08
2
2
$begingroup$
$frac{x^2}{x-2}=x+frac{4}{x-2}+2$
$endgroup$
– coreyman317
Feb 3 at 2:08
$begingroup$
$frac{x^2}{x-2}=x+frac{4}{x-2}+2$
$endgroup$
– coreyman317
Feb 3 at 2:08
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$
So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$
Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098070%2flimit-to-infinity-of-polynomial-fraction%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$
So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$
Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$
$endgroup$
add a comment |
$begingroup$
Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$
So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$
Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$
$endgroup$
add a comment |
$begingroup$
Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$
So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$
Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$
$endgroup$
Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$
So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$
Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$
answered Feb 3 at 2:14
coreyman317coreyman317
1,280522
1,280522
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098070%2flimit-to-infinity-of-polynomial-fraction%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
$frac{x^2}{x-2}=x+frac{4}{x-2}+2$
$endgroup$
– coreyman317
Feb 3 at 2:08