Limit to infinity of polynomial fraction












0












$begingroup$


I'm trying to solve for the function this limit approaches:



$$lim_{xto infty} frac{x^2}{x-2}$$



From graphing the function online I know it approaches $y=x+2$, but I am just unsure how to go about proving it. I can understand why it approaches $y=x$ but I'm unsure as to where the $+2$ comes from.



Any help would be greatly appreciated










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $frac{x^2}{x-2}=x+frac{4}{x-2}+2$
    $endgroup$
    – coreyman317
    Feb 3 at 2:08
















0












$begingroup$


I'm trying to solve for the function this limit approaches:



$$lim_{xto infty} frac{x^2}{x-2}$$



From graphing the function online I know it approaches $y=x+2$, but I am just unsure how to go about proving it. I can understand why it approaches $y=x$ but I'm unsure as to where the $+2$ comes from.



Any help would be greatly appreciated










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    $frac{x^2}{x-2}=x+frac{4}{x-2}+2$
    $endgroup$
    – coreyman317
    Feb 3 at 2:08














0












0








0





$begingroup$


I'm trying to solve for the function this limit approaches:



$$lim_{xto infty} frac{x^2}{x-2}$$



From graphing the function online I know it approaches $y=x+2$, but I am just unsure how to go about proving it. I can understand why it approaches $y=x$ but I'm unsure as to where the $+2$ comes from.



Any help would be greatly appreciated










share|cite|improve this question









$endgroup$




I'm trying to solve for the function this limit approaches:



$$lim_{xto infty} frac{x^2}{x-2}$$



From graphing the function online I know it approaches $y=x+2$, but I am just unsure how to go about proving it. I can understand why it approaches $y=x$ but I'm unsure as to where the $+2$ comes from.



Any help would be greatly appreciated







limits polynomials graphing-functions






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 3 at 2:01









ultralightultralight

806




806








  • 2




    $begingroup$
    $frac{x^2}{x-2}=x+frac{4}{x-2}+2$
    $endgroup$
    – coreyman317
    Feb 3 at 2:08














  • 2




    $begingroup$
    $frac{x^2}{x-2}=x+frac{4}{x-2}+2$
    $endgroup$
    – coreyman317
    Feb 3 at 2:08








2




2




$begingroup$
$frac{x^2}{x-2}=x+frac{4}{x-2}+2$
$endgroup$
– coreyman317
Feb 3 at 2:08




$begingroup$
$frac{x^2}{x-2}=x+frac{4}{x-2}+2$
$endgroup$
– coreyman317
Feb 3 at 2:08










1 Answer
1






active

oldest

votes


















3












$begingroup$

Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$



So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$



Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098070%2flimit-to-infinity-of-polynomial-fraction%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$



    So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$



    Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$






    share|cite|improve this answer









    $endgroup$


















      3












      $begingroup$

      Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$



      So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$



      Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$






      share|cite|improve this answer









      $endgroup$
















        3












        3








        3





        $begingroup$

        Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$



        So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$



        Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$






        share|cite|improve this answer









        $endgroup$



        Let us prove your statement by simply showing $$frac{x^2}{x-2}=x+frac{4}{x-2}+2$$



        So $$frac{x^2}{x-2}=frac{x^2-4+4}{x-2}=frac{x^2-4}{x-2}+frac{4}{x-2}=frac{(x-2)(x+2)}{x-2}+frac{4}{x-2}=x+2+frac{4}{x-2}$$



        Now take the limit as $xtoinfty$ of both sides: $$lim_{xtoinfty}frac{x^2}{x-2}=lim_{xtoinfty}left(x+2+frac{4}{x-2}right)=lim_{xtoinfty}left(x+2right)+lim_{xtoinfty}frac{4}{x-2}=lim_{xtoinfty}left(x+2right)$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 3 at 2:14









        coreyman317coreyman317

        1,280522




        1,280522






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098070%2flimit-to-infinity-of-polynomial-fraction%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith