Open Cover of (0,1) by infinite collection of sets
$begingroup$
text given in"Calculus on manifolds"
In the above text, it's mentioned that no finite collection of open cover of the form $(frac{1}{n},1-frac{1}{n})$, n $in N $ can cover the interval (0,1). But if we take n = 1, it gives the inteval (1,0) which does cover the interval (0,1).
So, is the statement given in the book wrong?
calculus general-topology manifolds
$endgroup$
add a comment |
$begingroup$
text given in"Calculus on manifolds"
In the above text, it's mentioned that no finite collection of open cover of the form $(frac{1}{n},1-frac{1}{n})$, n $in N $ can cover the interval (0,1). But if we take n = 1, it gives the inteval (1,0) which does cover the interval (0,1).
So, is the statement given in the book wrong?
calculus general-topology manifolds
$endgroup$
4
$begingroup$
The link you provide clearly specifies $n>1$.
$endgroup$
– lulu
Feb 2 at 11:02
5
$begingroup$
$(1,0) = {xinmathbb{R}: 1<x<0} = emptyset$
$endgroup$
– kellty
Feb 2 at 11:03
add a comment |
$begingroup$
text given in"Calculus on manifolds"
In the above text, it's mentioned that no finite collection of open cover of the form $(frac{1}{n},1-frac{1}{n})$, n $in N $ can cover the interval (0,1). But if we take n = 1, it gives the inteval (1,0) which does cover the interval (0,1).
So, is the statement given in the book wrong?
calculus general-topology manifolds
$endgroup$
text given in"Calculus on manifolds"
In the above text, it's mentioned that no finite collection of open cover of the form $(frac{1}{n},1-frac{1}{n})$, n $in N $ can cover the interval (0,1). But if we take n = 1, it gives the inteval (1,0) which does cover the interval (0,1).
So, is the statement given in the book wrong?
calculus general-topology manifolds
calculus general-topology manifolds
edited Feb 2 at 11:33
Asaf Karagila♦
308k33441775
308k33441775
asked Feb 2 at 11:00


AstikAstik
41
41
4
$begingroup$
The link you provide clearly specifies $n>1$.
$endgroup$
– lulu
Feb 2 at 11:02
5
$begingroup$
$(1,0) = {xinmathbb{R}: 1<x<0} = emptyset$
$endgroup$
– kellty
Feb 2 at 11:03
add a comment |
4
$begingroup$
The link you provide clearly specifies $n>1$.
$endgroup$
– lulu
Feb 2 at 11:02
5
$begingroup$
$(1,0) = {xinmathbb{R}: 1<x<0} = emptyset$
$endgroup$
– kellty
Feb 2 at 11:03
4
4
$begingroup$
The link you provide clearly specifies $n>1$.
$endgroup$
– lulu
Feb 2 at 11:02
$begingroup$
The link you provide clearly specifies $n>1$.
$endgroup$
– lulu
Feb 2 at 11:02
5
5
$begingroup$
$(1,0) = {xinmathbb{R}: 1<x<0} = emptyset$
$endgroup$
– kellty
Feb 2 at 11:03
$begingroup$
$(1,0) = {xinmathbb{R}: 1<x<0} = emptyset$
$endgroup$
– kellty
Feb 2 at 11:03
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You are wrong, because for $n=1$ you get
$$
left(frac11,1-frac11right)=(1,0)=emptyset.
$$
You have to consider that
$$
(a,b):={xinmathbb R~:~a<x<b}.
$$
Therefore $a>b$ will give $(a,b)=emptyset$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097188%2fopen-cover-of-0-1-by-infinite-collection-of-sets%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You are wrong, because for $n=1$ you get
$$
left(frac11,1-frac11right)=(1,0)=emptyset.
$$
You have to consider that
$$
(a,b):={xinmathbb R~:~a<x<b}.
$$
Therefore $a>b$ will give $(a,b)=emptyset$.
$endgroup$
add a comment |
$begingroup$
You are wrong, because for $n=1$ you get
$$
left(frac11,1-frac11right)=(1,0)=emptyset.
$$
You have to consider that
$$
(a,b):={xinmathbb R~:~a<x<b}.
$$
Therefore $a>b$ will give $(a,b)=emptyset$.
$endgroup$
add a comment |
$begingroup$
You are wrong, because for $n=1$ you get
$$
left(frac11,1-frac11right)=(1,0)=emptyset.
$$
You have to consider that
$$
(a,b):={xinmathbb R~:~a<x<b}.
$$
Therefore $a>b$ will give $(a,b)=emptyset$.
$endgroup$
You are wrong, because for $n=1$ you get
$$
left(frac11,1-frac11right)=(1,0)=emptyset.
$$
You have to consider that
$$
(a,b):={xinmathbb R~:~a<x<b}.
$$
Therefore $a>b$ will give $(a,b)=emptyset$.
answered Feb 2 at 11:03
Mundron SchmidtMundron Schmidt
7,4942729
7,4942729
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097188%2fopen-cover-of-0-1-by-infinite-collection-of-sets%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
The link you provide clearly specifies $n>1$.
$endgroup$
– lulu
Feb 2 at 11:02
5
$begingroup$
$(1,0) = {xinmathbb{R}: 1<x<0} = emptyset$
$endgroup$
– kellty
Feb 2 at 11:03