Proof of statement about invertible matrices raised to the power k
$begingroup$
True or false?
Let $A$ be a matrix of size $n times n$. If there is a natural number $k$ such that $A^k$ is invertible, then $A$ is invertible.
I intuitively understand that this is correct, but I would like to know what the formal proof for this statement is…
Thank you!
linear-algebra matrices inverse
$endgroup$
add a comment |
$begingroup$
True or false?
Let $A$ be a matrix of size $n times n$. If there is a natural number $k$ such that $A^k$ is invertible, then $A$ is invertible.
I intuitively understand that this is correct, but I would like to know what the formal proof for this statement is…
Thank you!
linear-algebra matrices inverse
$endgroup$
$begingroup$
One idea is to use determinants, noting that $det(A^k) = det(A)^k$
$endgroup$
– Omnomnomnom
Feb 2 at 13:52
1
$begingroup$
Hint: $I = A^kB = AA^{k-1}B$.
$endgroup$
– Ethan Bolker
Feb 2 at 13:53
add a comment |
$begingroup$
True or false?
Let $A$ be a matrix of size $n times n$. If there is a natural number $k$ such that $A^k$ is invertible, then $A$ is invertible.
I intuitively understand that this is correct, but I would like to know what the formal proof for this statement is…
Thank you!
linear-algebra matrices inverse
$endgroup$
True or false?
Let $A$ be a matrix of size $n times n$. If there is a natural number $k$ such that $A^k$ is invertible, then $A$ is invertible.
I intuitively understand that this is correct, but I would like to know what the formal proof for this statement is…
Thank you!
linear-algebra matrices inverse
linear-algebra matrices inverse
edited Feb 2 at 14:14


Mostafa Ayaz
18.1k31040
18.1k31040
asked Feb 2 at 13:50
daltadalta
1578
1578
$begingroup$
One idea is to use determinants, noting that $det(A^k) = det(A)^k$
$endgroup$
– Omnomnomnom
Feb 2 at 13:52
1
$begingroup$
Hint: $I = A^kB = AA^{k-1}B$.
$endgroup$
– Ethan Bolker
Feb 2 at 13:53
add a comment |
$begingroup$
One idea is to use determinants, noting that $det(A^k) = det(A)^k$
$endgroup$
– Omnomnomnom
Feb 2 at 13:52
1
$begingroup$
Hint: $I = A^kB = AA^{k-1}B$.
$endgroup$
– Ethan Bolker
Feb 2 at 13:53
$begingroup$
One idea is to use determinants, noting that $det(A^k) = det(A)^k$
$endgroup$
– Omnomnomnom
Feb 2 at 13:52
$begingroup$
One idea is to use determinants, noting that $det(A^k) = det(A)^k$
$endgroup$
– Omnomnomnom
Feb 2 at 13:52
1
1
$begingroup$
Hint: $I = A^kB = AA^{k-1}B$.
$endgroup$
– Ethan Bolker
Feb 2 at 13:53
$begingroup$
Hint: $I = A^kB = AA^{k-1}B$.
$endgroup$
– Ethan Bolker
Feb 2 at 13:53
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint
If the eigenvalues of the matrix $A$ are $lambda_1,cdots ,lambda_n$, then the eigenvalues of matrix $A^k$ would be $lambda_1^k,cdots ,lambda_n^k$
$endgroup$
add a comment |
$begingroup$
If $A^k$ is invertible then $det (A^k)ne 0$. But $det(A^k)=det(A)^k$ (since a field has no zero divisors, so $det(A)^kne 0$ or $det(A)ne 0$, meaning $A$ is invertible.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097307%2fproof-of-statement-about-invertible-matrices-raised-to-the-power-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
If the eigenvalues of the matrix $A$ are $lambda_1,cdots ,lambda_n$, then the eigenvalues of matrix $A^k$ would be $lambda_1^k,cdots ,lambda_n^k$
$endgroup$
add a comment |
$begingroup$
Hint
If the eigenvalues of the matrix $A$ are $lambda_1,cdots ,lambda_n$, then the eigenvalues of matrix $A^k$ would be $lambda_1^k,cdots ,lambda_n^k$
$endgroup$
add a comment |
$begingroup$
Hint
If the eigenvalues of the matrix $A$ are $lambda_1,cdots ,lambda_n$, then the eigenvalues of matrix $A^k$ would be $lambda_1^k,cdots ,lambda_n^k$
$endgroup$
Hint
If the eigenvalues of the matrix $A$ are $lambda_1,cdots ,lambda_n$, then the eigenvalues of matrix $A^k$ would be $lambda_1^k,cdots ,lambda_n^k$
answered Feb 2 at 14:15


Mostafa AyazMostafa Ayaz
18.1k31040
18.1k31040
add a comment |
add a comment |
$begingroup$
If $A^k$ is invertible then $det (A^k)ne 0$. But $det(A^k)=det(A)^k$ (since a field has no zero divisors, so $det(A)^kne 0$ or $det(A)ne 0$, meaning $A$ is invertible.
$endgroup$
add a comment |
$begingroup$
If $A^k$ is invertible then $det (A^k)ne 0$. But $det(A^k)=det(A)^k$ (since a field has no zero divisors, so $det(A)^kne 0$ or $det(A)ne 0$, meaning $A$ is invertible.
$endgroup$
add a comment |
$begingroup$
If $A^k$ is invertible then $det (A^k)ne 0$. But $det(A^k)=det(A)^k$ (since a field has no zero divisors, so $det(A)^kne 0$ or $det(A)ne 0$, meaning $A$ is invertible.
$endgroup$
If $A^k$ is invertible then $det (A^k)ne 0$. But $det(A^k)=det(A)^k$ (since a field has no zero divisors, so $det(A)^kne 0$ or $det(A)ne 0$, meaning $A$ is invertible.
answered Feb 2 at 14:26


Yuval GatYuval Gat
9641213
9641213
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097307%2fproof-of-statement-about-invertible-matrices-raised-to-the-power-k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
One idea is to use determinants, noting that $det(A^k) = det(A)^k$
$endgroup$
– Omnomnomnom
Feb 2 at 13:52
1
$begingroup$
Hint: $I = A^kB = AA^{k-1}B$.
$endgroup$
– Ethan Bolker
Feb 2 at 13:53