Prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$ and $lim_{ntoinfty} frac{1}{ln(n+1)}=0$
$begingroup$
Use the definition of the limit of a sequence to prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$.
We have
$$begin{align}
left|frac{n^2-1}{2n^2+3}-frac{1}{2}right| & =left|frac{2n^2-2-2n^2-3}{2(2n^2+3)}right| \
&= left|frac{-5}{2(2n^2+3)}right|\
&= frac{5}{2(2n^2+3)} \
&<frac{5}{4n^2},
end{align}$$
$$frac{5}{4n^2}<epsilon iff frac{1}{n^2}<frac{4 epsilon}{5} iff n>sqrt{frac{5}{4epsilon}}$$
We choose $n_0=left[sqrt{frac{5}{4epsilon}} right]+1$, Then $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$.
Let $(x_n)=frac{1}{ln(n+1)}$ for $n in mathbb{N}$.
a) Use the definition of the limit to show that $lim(x_n)=0$.
$|frac{1}{ln(n+1)}-0|=frac{1}{ln(n+1)}<epsilon Leftrightarrow ln(n+1) > epsilon Leftrightarrow n> e^{epsilon} -1$
We choose $n_0=left[ e^epsilon -1 right]+1$, Then $lim(x_n)=0$.
b) Find specific value of $n_0 (epsilon)$ as required in definition of limit for $epsilon=frac{1}{2}$.
$n_0=left[sqrt{e}-1right]+1$
Is that true, please?
real-analysis sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Use the definition of the limit of a sequence to prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$.
We have
$$begin{align}
left|frac{n^2-1}{2n^2+3}-frac{1}{2}right| & =left|frac{2n^2-2-2n^2-3}{2(2n^2+3)}right| \
&= left|frac{-5}{2(2n^2+3)}right|\
&= frac{5}{2(2n^2+3)} \
&<frac{5}{4n^2},
end{align}$$
$$frac{5}{4n^2}<epsilon iff frac{1}{n^2}<frac{4 epsilon}{5} iff n>sqrt{frac{5}{4epsilon}}$$
We choose $n_0=left[sqrt{frac{5}{4epsilon}} right]+1$, Then $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$.
Let $(x_n)=frac{1}{ln(n+1)}$ for $n in mathbb{N}$.
a) Use the definition of the limit to show that $lim(x_n)=0$.
$|frac{1}{ln(n+1)}-0|=frac{1}{ln(n+1)}<epsilon Leftrightarrow ln(n+1) > epsilon Leftrightarrow n> e^{epsilon} -1$
We choose $n_0=left[ e^epsilon -1 right]+1$, Then $lim(x_n)=0$.
b) Find specific value of $n_0 (epsilon)$ as required in definition of limit for $epsilon=frac{1}{2}$.
$n_0=left[sqrt{e}-1right]+1$
Is that true, please?
real-analysis sequences-and-series limits
$endgroup$
1
$begingroup$
In your second exercise, you should have $ln(n+1)>1/epsilon$.
$endgroup$
– John Wayland Bales
Feb 3 at 1:25
1
$begingroup$
You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
$endgroup$
– David Peterson
Feb 3 at 1:26
$begingroup$
@JohnWaylandBales You are right. Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
$begingroup$
@DavidPeterson Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
add a comment |
$begingroup$
Use the definition of the limit of a sequence to prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$.
We have
$$begin{align}
left|frac{n^2-1}{2n^2+3}-frac{1}{2}right| & =left|frac{2n^2-2-2n^2-3}{2(2n^2+3)}right| \
&= left|frac{-5}{2(2n^2+3)}right|\
&= frac{5}{2(2n^2+3)} \
&<frac{5}{4n^2},
end{align}$$
$$frac{5}{4n^2}<epsilon iff frac{1}{n^2}<frac{4 epsilon}{5} iff n>sqrt{frac{5}{4epsilon}}$$
We choose $n_0=left[sqrt{frac{5}{4epsilon}} right]+1$, Then $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$.
Let $(x_n)=frac{1}{ln(n+1)}$ for $n in mathbb{N}$.
a) Use the definition of the limit to show that $lim(x_n)=0$.
$|frac{1}{ln(n+1)}-0|=frac{1}{ln(n+1)}<epsilon Leftrightarrow ln(n+1) > epsilon Leftrightarrow n> e^{epsilon} -1$
We choose $n_0=left[ e^epsilon -1 right]+1$, Then $lim(x_n)=0$.
b) Find specific value of $n_0 (epsilon)$ as required in definition of limit for $epsilon=frac{1}{2}$.
$n_0=left[sqrt{e}-1right]+1$
Is that true, please?
real-analysis sequences-and-series limits
$endgroup$
Use the definition of the limit of a sequence to prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$.
We have
$$begin{align}
left|frac{n^2-1}{2n^2+3}-frac{1}{2}right| & =left|frac{2n^2-2-2n^2-3}{2(2n^2+3)}right| \
&= left|frac{-5}{2(2n^2+3)}right|\
&= frac{5}{2(2n^2+3)} \
&<frac{5}{4n^2},
end{align}$$
$$frac{5}{4n^2}<epsilon iff frac{1}{n^2}<frac{4 epsilon}{5} iff n>sqrt{frac{5}{4epsilon}}$$
We choose $n_0=left[sqrt{frac{5}{4epsilon}} right]+1$, Then $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$.
Let $(x_n)=frac{1}{ln(n+1)}$ for $n in mathbb{N}$.
a) Use the definition of the limit to show that $lim(x_n)=0$.
$|frac{1}{ln(n+1)}-0|=frac{1}{ln(n+1)}<epsilon Leftrightarrow ln(n+1) > epsilon Leftrightarrow n> e^{epsilon} -1$
We choose $n_0=left[ e^epsilon -1 right]+1$, Then $lim(x_n)=0$.
b) Find specific value of $n_0 (epsilon)$ as required in definition of limit for $epsilon=frac{1}{2}$.
$n_0=left[sqrt{e}-1right]+1$
Is that true, please?
real-analysis sequences-and-series limits
real-analysis sequences-and-series limits
edited Feb 3 at 1:36
Hanul Jeon
17.7k42881
17.7k42881
asked Feb 3 at 1:14
DimaDima
873616
873616
1
$begingroup$
In your second exercise, you should have $ln(n+1)>1/epsilon$.
$endgroup$
– John Wayland Bales
Feb 3 at 1:25
1
$begingroup$
You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
$endgroup$
– David Peterson
Feb 3 at 1:26
$begingroup$
@JohnWaylandBales You are right. Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
$begingroup$
@DavidPeterson Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
add a comment |
1
$begingroup$
In your second exercise, you should have $ln(n+1)>1/epsilon$.
$endgroup$
– John Wayland Bales
Feb 3 at 1:25
1
$begingroup$
You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
$endgroup$
– David Peterson
Feb 3 at 1:26
$begingroup$
@JohnWaylandBales You are right. Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
$begingroup$
@DavidPeterson Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
1
1
$begingroup$
In your second exercise, you should have $ln(n+1)>1/epsilon$.
$endgroup$
– John Wayland Bales
Feb 3 at 1:25
$begingroup$
In your second exercise, you should have $ln(n+1)>1/epsilon$.
$endgroup$
– John Wayland Bales
Feb 3 at 1:25
1
1
$begingroup$
You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
$endgroup$
– David Peterson
Feb 3 at 1:26
$begingroup$
You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
$endgroup$
– David Peterson
Feb 3 at 1:26
$begingroup$
@JohnWaylandBales You are right. Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
$begingroup$
@JohnWaylandBales You are right. Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
$begingroup$
@DavidPeterson Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
$begingroup$
@DavidPeterson Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:
Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$
Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$
Then proceed with the steps which you have given.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57
add a comment |
$begingroup$
For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$
For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$
$endgroup$
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
$begingroup$
Your answer is correct. However it seems you may have overcomplicated it.
begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}
Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.
Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}
$endgroup$
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098037%2fprove-that-lim-n-to-infty-fracn2-12n23-frac12-and-lim-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:
Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$
Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$
Then proceed with the steps which you have given.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57
add a comment |
$begingroup$
If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:
Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$
Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$
Then proceed with the steps which you have given.
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57
add a comment |
$begingroup$
If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:
Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$
Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$
Then proceed with the steps which you have given.
$endgroup$
If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:
Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$
Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$
Then proceed with the steps which you have given.
answered Feb 3 at 1:32
John Wayland BalesJohn Wayland Bales
15.2k21238
15.2k21238
$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57
add a comment |
$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57
$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57
$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57
add a comment |
$begingroup$
For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$
For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$
$endgroup$
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
$begingroup$
For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$
For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$
$endgroup$
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
$begingroup$
For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$
For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$
$endgroup$
For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$
For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$
edited Feb 3 at 1:36
Hanul Jeon
17.7k42881
17.7k42881
answered Feb 3 at 1:22
babemcnuggetsbabemcnuggets
116110
116110
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
$begingroup$
Your answer is correct. However it seems you may have overcomplicated it.
begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}
Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.
Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}
$endgroup$
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
$begingroup$
Your answer is correct. However it seems you may have overcomplicated it.
begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}
Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.
Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}
$endgroup$
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
$begingroup$
Your answer is correct. However it seems you may have overcomplicated it.
begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}
Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.
Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}
$endgroup$
Your answer is correct. However it seems you may have overcomplicated it.
begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}
Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.
Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}
edited Feb 3 at 1:37
Hanul Jeon
17.7k42881
17.7k42881
answered Feb 3 at 1:23


LandurosLanduros
1,8871620
1,8871620
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098037%2fprove-that-lim-n-to-infty-fracn2-12n23-frac12-and-lim-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
In your second exercise, you should have $ln(n+1)>1/epsilon$.
$endgroup$
– John Wayland Bales
Feb 3 at 1:25
1
$begingroup$
You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
$endgroup$
– David Peterson
Feb 3 at 1:26
$begingroup$
@JohnWaylandBales You are right. Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35
$begingroup$
@DavidPeterson Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35