Prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$ and $lim_{ntoinfty} frac{1}{ln(n+1)}=0$












1












$begingroup$



Use the definition of the limit of a sequence to prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$.




We have
$$begin{align}
left|frac{n^2-1}{2n^2+3}-frac{1}{2}right| & =left|frac{2n^2-2-2n^2-3}{2(2n^2+3)}right| \
&= left|frac{-5}{2(2n^2+3)}right|\
&= frac{5}{2(2n^2+3)} \
&<frac{5}{4n^2},
end{align}$$



$$frac{5}{4n^2}<epsilon iff frac{1}{n^2}<frac{4 epsilon}{5} iff n>sqrt{frac{5}{4epsilon}}$$



We choose $n_0=left[sqrt{frac{5}{4epsilon}} right]+1$, Then $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$.




Let $(x_n)=frac{1}{ln(n+1)}$ for $n in mathbb{N}$.



a) Use the definition of the limit to show that $lim(x_n)=0$.




$|frac{1}{ln(n+1)}-0|=frac{1}{ln(n+1)}<epsilon Leftrightarrow ln(n+1) > epsilon Leftrightarrow n> e^{epsilon} -1$



We choose $n_0=left[ e^epsilon -1 right]+1$, Then $lim(x_n)=0$.




b) Find specific value of $n_0 (epsilon)$ as required in definition of limit for $epsilon=frac{1}{2}$.




$n_0=left[sqrt{e}-1right]+1$



Is that true, please?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    In your second exercise, you should have $ln(n+1)>1/epsilon$.
    $endgroup$
    – John Wayland Bales
    Feb 3 at 1:25






  • 1




    $begingroup$
    You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
    $endgroup$
    – David Peterson
    Feb 3 at 1:26










  • $begingroup$
    @JohnWaylandBales You are right. Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:35










  • $begingroup$
    @DavidPeterson Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:35
















1












$begingroup$



Use the definition of the limit of a sequence to prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$.




We have
$$begin{align}
left|frac{n^2-1}{2n^2+3}-frac{1}{2}right| & =left|frac{2n^2-2-2n^2-3}{2(2n^2+3)}right| \
&= left|frac{-5}{2(2n^2+3)}right|\
&= frac{5}{2(2n^2+3)} \
&<frac{5}{4n^2},
end{align}$$



$$frac{5}{4n^2}<epsilon iff frac{1}{n^2}<frac{4 epsilon}{5} iff n>sqrt{frac{5}{4epsilon}}$$



We choose $n_0=left[sqrt{frac{5}{4epsilon}} right]+1$, Then $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$.




Let $(x_n)=frac{1}{ln(n+1)}$ for $n in mathbb{N}$.



a) Use the definition of the limit to show that $lim(x_n)=0$.




$|frac{1}{ln(n+1)}-0|=frac{1}{ln(n+1)}<epsilon Leftrightarrow ln(n+1) > epsilon Leftrightarrow n> e^{epsilon} -1$



We choose $n_0=left[ e^epsilon -1 right]+1$, Then $lim(x_n)=0$.




b) Find specific value of $n_0 (epsilon)$ as required in definition of limit for $epsilon=frac{1}{2}$.




$n_0=left[sqrt{e}-1right]+1$



Is that true, please?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    In your second exercise, you should have $ln(n+1)>1/epsilon$.
    $endgroup$
    – John Wayland Bales
    Feb 3 at 1:25






  • 1




    $begingroup$
    You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
    $endgroup$
    – David Peterson
    Feb 3 at 1:26










  • $begingroup$
    @JohnWaylandBales You are right. Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:35










  • $begingroup$
    @DavidPeterson Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:35














1












1








1





$begingroup$



Use the definition of the limit of a sequence to prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$.




We have
$$begin{align}
left|frac{n^2-1}{2n^2+3}-frac{1}{2}right| & =left|frac{2n^2-2-2n^2-3}{2(2n^2+3)}right| \
&= left|frac{-5}{2(2n^2+3)}right|\
&= frac{5}{2(2n^2+3)} \
&<frac{5}{4n^2},
end{align}$$



$$frac{5}{4n^2}<epsilon iff frac{1}{n^2}<frac{4 epsilon}{5} iff n>sqrt{frac{5}{4epsilon}}$$



We choose $n_0=left[sqrt{frac{5}{4epsilon}} right]+1$, Then $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$.




Let $(x_n)=frac{1}{ln(n+1)}$ for $n in mathbb{N}$.



a) Use the definition of the limit to show that $lim(x_n)=0$.




$|frac{1}{ln(n+1)}-0|=frac{1}{ln(n+1)}<epsilon Leftrightarrow ln(n+1) > epsilon Leftrightarrow n> e^{epsilon} -1$



We choose $n_0=left[ e^epsilon -1 right]+1$, Then $lim(x_n)=0$.




b) Find specific value of $n_0 (epsilon)$ as required in definition of limit for $epsilon=frac{1}{2}$.




$n_0=left[sqrt{e}-1right]+1$



Is that true, please?










share|cite|improve this question











$endgroup$





Use the definition of the limit of a sequence to prove that $lim_{n to infty} (frac{n^2-1}{2n^2+3})=frac{1}{2}$.




We have
$$begin{align}
left|frac{n^2-1}{2n^2+3}-frac{1}{2}right| & =left|frac{2n^2-2-2n^2-3}{2(2n^2+3)}right| \
&= left|frac{-5}{2(2n^2+3)}right|\
&= frac{5}{2(2n^2+3)} \
&<frac{5}{4n^2},
end{align}$$



$$frac{5}{4n^2}<epsilon iff frac{1}{n^2}<frac{4 epsilon}{5} iff n>sqrt{frac{5}{4epsilon}}$$



We choose $n_0=left[sqrt{frac{5}{4epsilon}} right]+1$, Then $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$.




Let $(x_n)=frac{1}{ln(n+1)}$ for $n in mathbb{N}$.



a) Use the definition of the limit to show that $lim(x_n)=0$.




$|frac{1}{ln(n+1)}-0|=frac{1}{ln(n+1)}<epsilon Leftrightarrow ln(n+1) > epsilon Leftrightarrow n> e^{epsilon} -1$



We choose $n_0=left[ e^epsilon -1 right]+1$, Then $lim(x_n)=0$.




b) Find specific value of $n_0 (epsilon)$ as required in definition of limit for $epsilon=frac{1}{2}$.




$n_0=left[sqrt{e}-1right]+1$



Is that true, please?







real-analysis sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 3 at 1:36









Hanul Jeon

17.7k42881




17.7k42881










asked Feb 3 at 1:14









DimaDima

873616




873616








  • 1




    $begingroup$
    In your second exercise, you should have $ln(n+1)>1/epsilon$.
    $endgroup$
    – John Wayland Bales
    Feb 3 at 1:25






  • 1




    $begingroup$
    You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
    $endgroup$
    – David Peterson
    Feb 3 at 1:26










  • $begingroup$
    @JohnWaylandBales You are right. Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:35










  • $begingroup$
    @DavidPeterson Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:35














  • 1




    $begingroup$
    In your second exercise, you should have $ln(n+1)>1/epsilon$.
    $endgroup$
    – John Wayland Bales
    Feb 3 at 1:25






  • 1




    $begingroup$
    You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
    $endgroup$
    – David Peterson
    Feb 3 at 1:26










  • $begingroup$
    @JohnWaylandBales You are right. Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:35










  • $begingroup$
    @DavidPeterson Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:35








1




1




$begingroup$
In your second exercise, you should have $ln(n+1)>1/epsilon$.
$endgroup$
– John Wayland Bales
Feb 3 at 1:25




$begingroup$
In your second exercise, you should have $ln(n+1)>1/epsilon$.
$endgroup$
– John Wayland Bales
Feb 3 at 1:25




1




1




$begingroup$
You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
$endgroup$
– David Peterson
Feb 3 at 1:26




$begingroup$
You are only showing the work in finding an $n_0$. The actual proof should look like "Let $epsilon > 0$, and let $n_0 =$ ____. Then if $n>n_0$ .... work ... $|a_n - L| < epsilon$. QED"
$endgroup$
– David Peterson
Feb 3 at 1:26












$begingroup$
@JohnWaylandBales You are right. Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35




$begingroup$
@JohnWaylandBales You are right. Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35












$begingroup$
@DavidPeterson Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35




$begingroup$
@DavidPeterson Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:35










3 Answers
3






active

oldest

votes


















1












$begingroup$

If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:



Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$



Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$



Then proceed with the steps which you have given.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:57





















1












$begingroup$

For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$



For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34



















1












$begingroup$

Your answer is correct. However it seems you may have overcomplicated it.



begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}



Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.



Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098037%2fprove-that-lim-n-to-infty-fracn2-12n23-frac12-and-lim-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























3 Answers
3






active

oldest

votes








3 Answers
3






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:



Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$



Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$



Then proceed with the steps which you have given.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:57


















1












$begingroup$

If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:



Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$



Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$



Then proceed with the steps which you have given.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:57
















1












1








1





$begingroup$

If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:



Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$



Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$



Then proceed with the steps which you have given.






share|cite|improve this answer









$endgroup$



If you are using the definition of a limit at infinity, you should include a few more references to the definition in the proof:



Prove: $lim_{n to infty} left(frac{n^2-1}{2n^2+3}right)=frac{1}{2}$



Proof: Let $epsilon>0$. Show that there is a positive integer $n_0$ such that if $n>n_0$ then $left|frac{n^2-1}{2n^2+3}-frac{1}{2}right|<epsilon$



Then proceed with the steps which you have given.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Feb 3 at 1:32









John Wayland BalesJohn Wayland Bales

15.2k21238




15.2k21238












  • $begingroup$
    Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:57




















  • $begingroup$
    Thank you so much.
    $endgroup$
    – Dima
    Feb 3 at 1:57


















$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57






$begingroup$
Thank you so much.
$endgroup$
– Dima
Feb 3 at 1:57













1












$begingroup$

For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$



For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34
















1












$begingroup$

For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$



For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34














1












1








1





$begingroup$

For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$



For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$






share|cite|improve this answer











$endgroup$



For a) We have $lim_{nrightarrow infty} frac{n^2-1}{2n^2+3}=lim_{nrightarrow infty} frac{n^2(1-frac{1}{n^2})}{n^2(2+frac{3}{n^2})}= lim_{nrightarrow infty} frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}=frac{1}{2}$



For b) basically the same,meaning $ln$ is monotone so for $nrightarrow infty$ it follows that $ln(n)rightarrow infty$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Feb 3 at 1:36









Hanul Jeon

17.7k42881




17.7k42881










answered Feb 3 at 1:22









babemcnuggetsbabemcnuggets

116110




116110












  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34


















  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34
















$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34




$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34











1












$begingroup$

Your answer is correct. However it seems you may have overcomplicated it.



begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}



Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.



Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34
















1












$begingroup$

Your answer is correct. However it seems you may have overcomplicated it.



begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}



Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.



Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34














1












1








1





$begingroup$

Your answer is correct. However it seems you may have overcomplicated it.



begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}



Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.



Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}






share|cite|improve this answer











$endgroup$



Your answer is correct. However it seems you may have overcomplicated it.



begin{align}
lim_{nto infty}left(frac{n^2-1}{2n^2+3}right) & = lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right)\
end{align}



Now use the fact that $lim_{nto infty}left(frac{1}{n^k}right)=0$, where $k$ is any positive integer.



Hence
begin{align}
lim_{nto infty}left(frac{1-frac{1}{n^2}}{2+frac{3}{n^2}}right) & = lim_{nto infty}left(frac{1-0}{2+0}right)\
&= frac{1}{2}
end{align}







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Feb 3 at 1:37









Hanul Jeon

17.7k42881




17.7k42881










answered Feb 3 at 1:23









LandurosLanduros

1,8871620




1,8871620












  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34


















  • $begingroup$
    Thanks a lot, sorry I forget to write "by the definition".
    $endgroup$
    – Dima
    Feb 3 at 1:34
















$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34




$begingroup$
Thanks a lot, sorry I forget to write "by the definition".
$endgroup$
– Dima
Feb 3 at 1:34


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098037%2fprove-that-lim-n-to-infty-fracn2-12n23-frac12-and-lim-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

How to fix TextFormField cause rebuild widget in Flutter