Region of convergence (ROC) of Unilateral Laplace Transform
$begingroup$
Is it necessary to define the region of convergence of Unilateral Laplace Transform if we know that the signal is causal in time domain?
convergence fourier-analysis laplace-transform signal-processing
$endgroup$
add a comment |
$begingroup$
Is it necessary to define the region of convergence of Unilateral Laplace Transform if we know that the signal is causal in time domain?
convergence fourier-analysis laplace-transform signal-processing
$endgroup$
$begingroup$
$F(s) = int_a^infty f(t)e^{-st}dt$ with $a $ finite and $f$ locally integrable. If the integral converges for some $s_0$ then integration by parts gives $F(s+s_0) = int_a^infty (int_a^t f(u)e^{-s_0 u}du) e^{-st}dt$, since$ |int_a^t f(u)e^{-s_0 u}du| le C$ it converges for every $Re(s+s_0) > Re(s_0)$ and uniformly for $Re(s+s_0) > Re(s_0)+epsilon$.
$endgroup$
– reuns
Feb 3 at 6:42
add a comment |
$begingroup$
Is it necessary to define the region of convergence of Unilateral Laplace Transform if we know that the signal is causal in time domain?
convergence fourier-analysis laplace-transform signal-processing
$endgroup$
Is it necessary to define the region of convergence of Unilateral Laplace Transform if we know that the signal is causal in time domain?
convergence fourier-analysis laplace-transform signal-processing
convergence fourier-analysis laplace-transform signal-processing
asked Feb 3 at 5:55
VeljkoVeljko
713
713
$begingroup$
$F(s) = int_a^infty f(t)e^{-st}dt$ with $a $ finite and $f$ locally integrable. If the integral converges for some $s_0$ then integration by parts gives $F(s+s_0) = int_a^infty (int_a^t f(u)e^{-s_0 u}du) e^{-st}dt$, since$ |int_a^t f(u)e^{-s_0 u}du| le C$ it converges for every $Re(s+s_0) > Re(s_0)$ and uniformly for $Re(s+s_0) > Re(s_0)+epsilon$.
$endgroup$
– reuns
Feb 3 at 6:42
add a comment |
$begingroup$
$F(s) = int_a^infty f(t)e^{-st}dt$ with $a $ finite and $f$ locally integrable. If the integral converges for some $s_0$ then integration by parts gives $F(s+s_0) = int_a^infty (int_a^t f(u)e^{-s_0 u}du) e^{-st}dt$, since$ |int_a^t f(u)e^{-s_0 u}du| le C$ it converges for every $Re(s+s_0) > Re(s_0)$ and uniformly for $Re(s+s_0) > Re(s_0)+epsilon$.
$endgroup$
– reuns
Feb 3 at 6:42
$begingroup$
$F(s) = int_a^infty f(t)e^{-st}dt$ with $a $ finite and $f$ locally integrable. If the integral converges for some $s_0$ then integration by parts gives $F(s+s_0) = int_a^infty (int_a^t f(u)e^{-s_0 u}du) e^{-st}dt$, since$ |int_a^t f(u)e^{-s_0 u}du| le C$ it converges for every $Re(s+s_0) > Re(s_0)$ and uniformly for $Re(s+s_0) > Re(s_0)+epsilon$.
$endgroup$
– reuns
Feb 3 at 6:42
$begingroup$
$F(s) = int_a^infty f(t)e^{-st}dt$ with $a $ finite and $f$ locally integrable. If the integral converges for some $s_0$ then integration by parts gives $F(s+s_0) = int_a^infty (int_a^t f(u)e^{-s_0 u}du) e^{-st}dt$, since$ |int_a^t f(u)e^{-s_0 u}du| le C$ it converges for every $Re(s+s_0) > Re(s_0)$ and uniformly for $Re(s+s_0) > Re(s_0)+epsilon$.
$endgroup$
– reuns
Feb 3 at 6:42
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098238%2fregion-of-convergence-roc-of-unilateral-laplace-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3098238%2fregion-of-convergence-roc-of-unilateral-laplace-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$F(s) = int_a^infty f(t)e^{-st}dt$ with $a $ finite and $f$ locally integrable. If the integral converges for some $s_0$ then integration by parts gives $F(s+s_0) = int_a^infty (int_a^t f(u)e^{-s_0 u}du) e^{-st}dt$, since$ |int_a^t f(u)e^{-s_0 u}du| le C$ it converges for every $Re(s+s_0) > Re(s_0)$ and uniformly for $Re(s+s_0) > Re(s_0)+epsilon$.
$endgroup$
– reuns
Feb 3 at 6:42