Sum involving $ln{(2)}$
$begingroup$
I got this sum. How do can this sum be equal to $8ln{(2)}?$
$$sum_{n=2}^{infty}frac{(-1)^n}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]=8ln{(2)}$$
I have try to expand out the sum but it is too messy. Dealing the sum in this form, I haven't got any idea.
Any help.
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
I got this sum. How do can this sum be equal to $8ln{(2)}?$
$$sum_{n=2}^{infty}frac{(-1)^n}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]=8ln{(2)}$$
I have try to expand out the sum but it is too messy. Dealing the sum in this form, I haven't got any idea.
Any help.
real-analysis sequences-and-series
$endgroup$
add a comment |
$begingroup$
I got this sum. How do can this sum be equal to $8ln{(2)}?$
$$sum_{n=2}^{infty}frac{(-1)^n}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]=8ln{(2)}$$
I have try to expand out the sum but it is too messy. Dealing the sum in this form, I haven't got any idea.
Any help.
real-analysis sequences-and-series
$endgroup$
I got this sum. How do can this sum be equal to $8ln{(2)}?$
$$sum_{n=2}^{infty}frac{(-1)^n}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]=8ln{(2)}$$
I have try to expand out the sum but it is too messy. Dealing the sum in this form, I haven't got any idea.
Any help.
real-analysis sequences-and-series
real-analysis sequences-and-series
edited Jan 31 at 16:42
Dragon
asked Jan 31 at 13:20
DragonDragon
655
655
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
First note that
begin{eqnarray*}
&&frac{1}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]\
&=&frac{74}{n}+frac2{(n+1)^2}-frac2{(n-1)^2}+frac{41}{n+1}+frac{41}{n-1}-frac{156}{2n+1}-frac{156}{2n-1}
end{eqnarray*}
and
begin{eqnarray*}
&&sum_{n=2}^{infty}frac{(-1)^n}{n-1}=ln2,sum_{n=2}^{infty}frac{(-1)^n}{n}=1-ln2,sum_{n=2}^{infty}frac{(-1)^n}{n+1}=-frac12+ln2,\
&&sum_{n=2}^{infty}frac{(-1)^n}{2n-1}=frac{4-pi}{4},sum_{n=2}^{infty}frac{(-1)^n}{2n+1}=frac{-8+3pi}{12},\
&&sum_{n=2}^{infty}(-1)^nbigg[frac2{(n+1)^2}-frac2{(n-1)^2}bigg]\
&=&2sum_{n=1}^{infty}bigg[frac1{(2n+1)^2}-frac1{(2n-1)^2}bigg]-2sum_{n=2}^{infty}bigg[frac1{(2n)^2}-frac1{(2n-2)^2}bigg]\
&=&-2+frac12=-frac32.
end{eqnarray*}
Then you can put them to give the answer.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094872%2fsum-involving-ln2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First note that
begin{eqnarray*}
&&frac{1}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]\
&=&frac{74}{n}+frac2{(n+1)^2}-frac2{(n-1)^2}+frac{41}{n+1}+frac{41}{n-1}-frac{156}{2n+1}-frac{156}{2n-1}
end{eqnarray*}
and
begin{eqnarray*}
&&sum_{n=2}^{infty}frac{(-1)^n}{n-1}=ln2,sum_{n=2}^{infty}frac{(-1)^n}{n}=1-ln2,sum_{n=2}^{infty}frac{(-1)^n}{n+1}=-frac12+ln2,\
&&sum_{n=2}^{infty}frac{(-1)^n}{2n-1}=frac{4-pi}{4},sum_{n=2}^{infty}frac{(-1)^n}{2n+1}=frac{-8+3pi}{12},\
&&sum_{n=2}^{infty}(-1)^nbigg[frac2{(n+1)^2}-frac2{(n-1)^2}bigg]\
&=&2sum_{n=1}^{infty}bigg[frac1{(2n+1)^2}-frac1{(2n-1)^2}bigg]-2sum_{n=2}^{infty}bigg[frac1{(2n)^2}-frac1{(2n-2)^2}bigg]\
&=&-2+frac12=-frac32.
end{eqnarray*}
Then you can put them to give the answer.
$endgroup$
add a comment |
$begingroup$
First note that
begin{eqnarray*}
&&frac{1}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]\
&=&frac{74}{n}+frac2{(n+1)^2}-frac2{(n-1)^2}+frac{41}{n+1}+frac{41}{n-1}-frac{156}{2n+1}-frac{156}{2n-1}
end{eqnarray*}
and
begin{eqnarray*}
&&sum_{n=2}^{infty}frac{(-1)^n}{n-1}=ln2,sum_{n=2}^{infty}frac{(-1)^n}{n}=1-ln2,sum_{n=2}^{infty}frac{(-1)^n}{n+1}=-frac12+ln2,\
&&sum_{n=2}^{infty}frac{(-1)^n}{2n-1}=frac{4-pi}{4},sum_{n=2}^{infty}frac{(-1)^n}{2n+1}=frac{-8+3pi}{12},\
&&sum_{n=2}^{infty}(-1)^nbigg[frac2{(n+1)^2}-frac2{(n-1)^2}bigg]\
&=&2sum_{n=1}^{infty}bigg[frac1{(2n+1)^2}-frac1{(2n-1)^2}bigg]-2sum_{n=2}^{infty}bigg[frac1{(2n)^2}-frac1{(2n-2)^2}bigg]\
&=&-2+frac12=-frac32.
end{eqnarray*}
Then you can put them to give the answer.
$endgroup$
add a comment |
$begingroup$
First note that
begin{eqnarray*}
&&frac{1}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]\
&=&frac{74}{n}+frac2{(n+1)^2}-frac2{(n-1)^2}+frac{41}{n+1}+frac{41}{n-1}-frac{156}{2n+1}-frac{156}{2n-1}
end{eqnarray*}
and
begin{eqnarray*}
&&sum_{n=2}^{infty}frac{(-1)^n}{n-1}=ln2,sum_{n=2}^{infty}frac{(-1)^n}{n}=1-ln2,sum_{n=2}^{infty}frac{(-1)^n}{n+1}=-frac12+ln2,\
&&sum_{n=2}^{infty}frac{(-1)^n}{2n-1}=frac{4-pi}{4},sum_{n=2}^{infty}frac{(-1)^n}{2n+1}=frac{-8+3pi}{12},\
&&sum_{n=2}^{infty}(-1)^nbigg[frac2{(n+1)^2}-frac2{(n-1)^2}bigg]\
&=&2sum_{n=1}^{infty}bigg[frac1{(2n+1)^2}-frac1{(2n-1)^2}bigg]-2sum_{n=2}^{infty}bigg[frac1{(2n)^2}-frac1{(2n-2)^2}bigg]\
&=&-2+frac12=-frac32.
end{eqnarray*}
Then you can put them to give the answer.
$endgroup$
First note that
begin{eqnarray*}
&&frac{1}{n}left[frac{35n-37}{(2n-1)(n-1)^2}+frac{35n+37}{(2n+1)(n+1)^2}right]\
&=&frac{74}{n}+frac2{(n+1)^2}-frac2{(n-1)^2}+frac{41}{n+1}+frac{41}{n-1}-frac{156}{2n+1}-frac{156}{2n-1}
end{eqnarray*}
and
begin{eqnarray*}
&&sum_{n=2}^{infty}frac{(-1)^n}{n-1}=ln2,sum_{n=2}^{infty}frac{(-1)^n}{n}=1-ln2,sum_{n=2}^{infty}frac{(-1)^n}{n+1}=-frac12+ln2,\
&&sum_{n=2}^{infty}frac{(-1)^n}{2n-1}=frac{4-pi}{4},sum_{n=2}^{infty}frac{(-1)^n}{2n+1}=frac{-8+3pi}{12},\
&&sum_{n=2}^{infty}(-1)^nbigg[frac2{(n+1)^2}-frac2{(n-1)^2}bigg]\
&=&2sum_{n=1}^{infty}bigg[frac1{(2n+1)^2}-frac1{(2n-1)^2}bigg]-2sum_{n=2}^{infty}bigg[frac1{(2n)^2}-frac1{(2n-2)^2}bigg]\
&=&-2+frac12=-frac32.
end{eqnarray*}
Then you can put them to give the answer.
edited Jan 31 at 17:36
answered Jan 31 at 16:25


xpaulxpaul
23.4k24655
23.4k24655
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094872%2fsum-involving-ln2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown