Find the transformation matrix of a linear mapping given 2 basis and only one image of one vector of each...
$begingroup$
Linear mapping g: R² ↦ R²
. They give me one basis:
B = {F1 = (1,1), F2 = (-1,1)}
and another C = {e1 = (1,0), e2 = (0,1)}
. In addition g(e2) = F1
and g(F2) = e2
. I don't know how to get the form of the image, something like g(x, y) = (2x, y-x)
(with the correct values). Sorry for my poor format i'm still novice. Thanks in advance!
linear-algebra linear-transformations
$endgroup$
add a comment |
$begingroup$
Linear mapping g: R² ↦ R²
. They give me one basis:
B = {F1 = (1,1), F2 = (-1,1)}
and another C = {e1 = (1,0), e2 = (0,1)}
. In addition g(e2) = F1
and g(F2) = e2
. I don't know how to get the form of the image, something like g(x, y) = (2x, y-x)
(with the correct values). Sorry for my poor format i'm still novice. Thanks in advance!
linear-algebra linear-transformations
$endgroup$
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 for formatting tips.
$endgroup$
– Lord Shark the Unknown
Jan 7 at 16:59
add a comment |
$begingroup$
Linear mapping g: R² ↦ R²
. They give me one basis:
B = {F1 = (1,1), F2 = (-1,1)}
and another C = {e1 = (1,0), e2 = (0,1)}
. In addition g(e2) = F1
and g(F2) = e2
. I don't know how to get the form of the image, something like g(x, y) = (2x, y-x)
(with the correct values). Sorry for my poor format i'm still novice. Thanks in advance!
linear-algebra linear-transformations
$endgroup$
Linear mapping g: R² ↦ R²
. They give me one basis:
B = {F1 = (1,1), F2 = (-1,1)}
and another C = {e1 = (1,0), e2 = (0,1)}
. In addition g(e2) = F1
and g(F2) = e2
. I don't know how to get the form of the image, something like g(x, y) = (2x, y-x)
(with the correct values). Sorry for my poor format i'm still novice. Thanks in advance!
linear-algebra linear-transformations
linear-algebra linear-transformations
asked Jan 7 at 16:54


S.BuzzoniS.Buzzoni
31
31
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 for formatting tips.
$endgroup$
– Lord Shark the Unknown
Jan 7 at 16:59
add a comment |
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 for formatting tips.
$endgroup$
– Lord Shark the Unknown
Jan 7 at 16:59
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 for formatting tips.
$endgroup$
– Lord Shark the Unknown
Jan 7 at 16:59
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 for formatting tips.
$endgroup$
– Lord Shark the Unknown
Jan 7 at 16:59
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let the matrix of $g:Bbb R^2toBbb R^2$ be $begin{bmatrix}a&b\c&dend{bmatrix}$.$$g(0,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}0\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}=begin{bmatrix}1\1end{bmatrix}\g(-1,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}-1\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}-begin{bmatrix}a\cend{bmatrix}=begin{bmatrix}0\1end{bmatrix}\impliesbegin{bmatrix}a\cend{bmatrix}=begin{bmatrix}1\0end{bmatrix}$$
This gives the matrix of $g$ as $begin{bmatrix}1&1\0&1end{bmatrix}$.$$implies g(x,y)=begin{bmatrix}1&1\0&1end{bmatrix}begin{bmatrix}x\yend{bmatrix}=(x+y,y)$$
$endgroup$
add a comment |
$begingroup$
$g(0,1)=(1,1)$
$ g(-1,1)=-g(1,0)+g(0,1)=(0,1)$
$-g(1,0) = (-1,0) rightarrow g(e_1)=e_1$
$g(e_2)=e_1 + e_2$
So the matrix of the transformation in standard basis looks like this:
begin{bmatrix}
1 & 1\
0 & 1\
end{bmatrix}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065216%2ffind-the-transformation-matrix-of-a-linear-mapping-given-2-basis-and-only-one-im%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let the matrix of $g:Bbb R^2toBbb R^2$ be $begin{bmatrix}a&b\c&dend{bmatrix}$.$$g(0,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}0\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}=begin{bmatrix}1\1end{bmatrix}\g(-1,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}-1\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}-begin{bmatrix}a\cend{bmatrix}=begin{bmatrix}0\1end{bmatrix}\impliesbegin{bmatrix}a\cend{bmatrix}=begin{bmatrix}1\0end{bmatrix}$$
This gives the matrix of $g$ as $begin{bmatrix}1&1\0&1end{bmatrix}$.$$implies g(x,y)=begin{bmatrix}1&1\0&1end{bmatrix}begin{bmatrix}x\yend{bmatrix}=(x+y,y)$$
$endgroup$
add a comment |
$begingroup$
Let the matrix of $g:Bbb R^2toBbb R^2$ be $begin{bmatrix}a&b\c&dend{bmatrix}$.$$g(0,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}0\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}=begin{bmatrix}1\1end{bmatrix}\g(-1,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}-1\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}-begin{bmatrix}a\cend{bmatrix}=begin{bmatrix}0\1end{bmatrix}\impliesbegin{bmatrix}a\cend{bmatrix}=begin{bmatrix}1\0end{bmatrix}$$
This gives the matrix of $g$ as $begin{bmatrix}1&1\0&1end{bmatrix}$.$$implies g(x,y)=begin{bmatrix}1&1\0&1end{bmatrix}begin{bmatrix}x\yend{bmatrix}=(x+y,y)$$
$endgroup$
add a comment |
$begingroup$
Let the matrix of $g:Bbb R^2toBbb R^2$ be $begin{bmatrix}a&b\c&dend{bmatrix}$.$$g(0,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}0\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}=begin{bmatrix}1\1end{bmatrix}\g(-1,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}-1\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}-begin{bmatrix}a\cend{bmatrix}=begin{bmatrix}0\1end{bmatrix}\impliesbegin{bmatrix}a\cend{bmatrix}=begin{bmatrix}1\0end{bmatrix}$$
This gives the matrix of $g$ as $begin{bmatrix}1&1\0&1end{bmatrix}$.$$implies g(x,y)=begin{bmatrix}1&1\0&1end{bmatrix}begin{bmatrix}x\yend{bmatrix}=(x+y,y)$$
$endgroup$
Let the matrix of $g:Bbb R^2toBbb R^2$ be $begin{bmatrix}a&b\c&dend{bmatrix}$.$$g(0,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}0\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}=begin{bmatrix}1\1end{bmatrix}\g(-1,1)=begin{bmatrix}a&b\c&dend{bmatrix}begin{bmatrix}-1\1end{bmatrix}=begin{bmatrix}b\dend{bmatrix}-begin{bmatrix}a\cend{bmatrix}=begin{bmatrix}0\1end{bmatrix}\impliesbegin{bmatrix}a\cend{bmatrix}=begin{bmatrix}1\0end{bmatrix}$$
This gives the matrix of $g$ as $begin{bmatrix}1&1\0&1end{bmatrix}$.$$implies g(x,y)=begin{bmatrix}1&1\0&1end{bmatrix}begin{bmatrix}x\yend{bmatrix}=(x+y,y)$$
answered Jan 7 at 17:07


Shubham JohriShubham Johri
5,017717
5,017717
add a comment |
add a comment |
$begingroup$
$g(0,1)=(1,1)$
$ g(-1,1)=-g(1,0)+g(0,1)=(0,1)$
$-g(1,0) = (-1,0) rightarrow g(e_1)=e_1$
$g(e_2)=e_1 + e_2$
So the matrix of the transformation in standard basis looks like this:
begin{bmatrix}
1 & 1\
0 & 1\
end{bmatrix}
$endgroup$
add a comment |
$begingroup$
$g(0,1)=(1,1)$
$ g(-1,1)=-g(1,0)+g(0,1)=(0,1)$
$-g(1,0) = (-1,0) rightarrow g(e_1)=e_1$
$g(e_2)=e_1 + e_2$
So the matrix of the transformation in standard basis looks like this:
begin{bmatrix}
1 & 1\
0 & 1\
end{bmatrix}
$endgroup$
add a comment |
$begingroup$
$g(0,1)=(1,1)$
$ g(-1,1)=-g(1,0)+g(0,1)=(0,1)$
$-g(1,0) = (-1,0) rightarrow g(e_1)=e_1$
$g(e_2)=e_1 + e_2$
So the matrix of the transformation in standard basis looks like this:
begin{bmatrix}
1 & 1\
0 & 1\
end{bmatrix}
$endgroup$
$g(0,1)=(1,1)$
$ g(-1,1)=-g(1,0)+g(0,1)=(0,1)$
$-g(1,0) = (-1,0) rightarrow g(e_1)=e_1$
$g(e_2)=e_1 + e_2$
So the matrix of the transformation in standard basis looks like this:
begin{bmatrix}
1 & 1\
0 & 1\
end{bmatrix}
answered Jan 7 at 19:01


The CatThe Cat
18411
18411
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065216%2ffind-the-transformation-matrix-of-a-linear-mapping-given-2-basis-and-only-one-im%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Please see math.meta.stackexchange.com/questions/5020 for formatting tips.
$endgroup$
– Lord Shark the Unknown
Jan 7 at 16:59