Are free groups and free actions related?
$begingroup$
Is there a connection between free groups and free actions, or is it that their names just happen to be the same? I'm studying groups theory at the moment, and haven't found any relation between the two, and I find it a bit odd that the names are so similar.
group-theory free-groups
$endgroup$
|
show 1 more comment
$begingroup$
Is there a connection between free groups and free actions, or is it that their names just happen to be the same? I'm studying groups theory at the moment, and haven't found any relation between the two, and I find it a bit odd that the names are so similar.
group-theory free-groups
$endgroup$
7
$begingroup$
Free actions are free objects in the category of $G$-sets. This is probably not where the name comes from, though. They both mean free as in unconstrained.
$endgroup$
– Qiaochu Yuan
Dec 25 '18 at 20:41
$begingroup$
"Free" is a common word, like "torsion-free" etc. They are not necessarily all related.
$endgroup$
– Dietrich Burde
Dec 25 '18 at 21:08
$begingroup$
@QiaochuYuan that should be an answer.
$endgroup$
– freakish
Dec 25 '18 at 21:38
$begingroup$
@QiaochuYuan I'll take that as an answer, Thank you!
$endgroup$
– Rei Henigman
Dec 26 '18 at 19:12
1
$begingroup$
Free groups are exactly the groups which act freely on trees(of course this is a very special case of a free action).
$endgroup$
– Paul Plummer
Dec 27 '18 at 17:29
|
show 1 more comment
$begingroup$
Is there a connection between free groups and free actions, or is it that their names just happen to be the same? I'm studying groups theory at the moment, and haven't found any relation between the two, and I find it a bit odd that the names are so similar.
group-theory free-groups
$endgroup$
Is there a connection between free groups and free actions, or is it that their names just happen to be the same? I'm studying groups theory at the moment, and haven't found any relation between the two, and I find it a bit odd that the names are so similar.
group-theory free-groups
group-theory free-groups
asked Dec 25 '18 at 20:38
Rei HenigmanRei Henigman
717
717
7
$begingroup$
Free actions are free objects in the category of $G$-sets. This is probably not where the name comes from, though. They both mean free as in unconstrained.
$endgroup$
– Qiaochu Yuan
Dec 25 '18 at 20:41
$begingroup$
"Free" is a common word, like "torsion-free" etc. They are not necessarily all related.
$endgroup$
– Dietrich Burde
Dec 25 '18 at 21:08
$begingroup$
@QiaochuYuan that should be an answer.
$endgroup$
– freakish
Dec 25 '18 at 21:38
$begingroup$
@QiaochuYuan I'll take that as an answer, Thank you!
$endgroup$
– Rei Henigman
Dec 26 '18 at 19:12
1
$begingroup$
Free groups are exactly the groups which act freely on trees(of course this is a very special case of a free action).
$endgroup$
– Paul Plummer
Dec 27 '18 at 17:29
|
show 1 more comment
7
$begingroup$
Free actions are free objects in the category of $G$-sets. This is probably not where the name comes from, though. They both mean free as in unconstrained.
$endgroup$
– Qiaochu Yuan
Dec 25 '18 at 20:41
$begingroup$
"Free" is a common word, like "torsion-free" etc. They are not necessarily all related.
$endgroup$
– Dietrich Burde
Dec 25 '18 at 21:08
$begingroup$
@QiaochuYuan that should be an answer.
$endgroup$
– freakish
Dec 25 '18 at 21:38
$begingroup$
@QiaochuYuan I'll take that as an answer, Thank you!
$endgroup$
– Rei Henigman
Dec 26 '18 at 19:12
1
$begingroup$
Free groups are exactly the groups which act freely on trees(of course this is a very special case of a free action).
$endgroup$
– Paul Plummer
Dec 27 '18 at 17:29
7
7
$begingroup$
Free actions are free objects in the category of $G$-sets. This is probably not where the name comes from, though. They both mean free as in unconstrained.
$endgroup$
– Qiaochu Yuan
Dec 25 '18 at 20:41
$begingroup$
Free actions are free objects in the category of $G$-sets. This is probably not where the name comes from, though. They both mean free as in unconstrained.
$endgroup$
– Qiaochu Yuan
Dec 25 '18 at 20:41
$begingroup$
"Free" is a common word, like "torsion-free" etc. They are not necessarily all related.
$endgroup$
– Dietrich Burde
Dec 25 '18 at 21:08
$begingroup$
"Free" is a common word, like "torsion-free" etc. They are not necessarily all related.
$endgroup$
– Dietrich Burde
Dec 25 '18 at 21:08
$begingroup$
@QiaochuYuan that should be an answer.
$endgroup$
– freakish
Dec 25 '18 at 21:38
$begingroup$
@QiaochuYuan that should be an answer.
$endgroup$
– freakish
Dec 25 '18 at 21:38
$begingroup$
@QiaochuYuan I'll take that as an answer, Thank you!
$endgroup$
– Rei Henigman
Dec 26 '18 at 19:12
$begingroup$
@QiaochuYuan I'll take that as an answer, Thank you!
$endgroup$
– Rei Henigman
Dec 26 '18 at 19:12
1
1
$begingroup$
Free groups are exactly the groups which act freely on trees(of course this is a very special case of a free action).
$endgroup$
– Paul Plummer
Dec 27 '18 at 17:29
$begingroup$
Free groups are exactly the groups which act freely on trees(of course this is a very special case of a free action).
$endgroup$
– Paul Plummer
Dec 27 '18 at 17:29
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
Free $G$-actions are free objects in the category of G-sets.
More precisely, a free object on a set $I$ in this category is the same as a free $G$-set $X$ endowed with a map $Ito G$ meeting once each orbit; the obvious way to produce it is just considering $X=Gtimes I$ with action $gcdot (h,i)=(gh,i)$ and the map $Ito X$, $imapsto (1,i)$.
For a free action on a set $I$, the maps from various sets to $X$ satisfying the given property are the free generating families of $X$ as $G$-set.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052414%2fare-free-groups-and-free-actions-related%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Free $G$-actions are free objects in the category of G-sets.
More precisely, a free object on a set $I$ in this category is the same as a free $G$-set $X$ endowed with a map $Ito G$ meeting once each orbit; the obvious way to produce it is just considering $X=Gtimes I$ with action $gcdot (h,i)=(gh,i)$ and the map $Ito X$, $imapsto (1,i)$.
For a free action on a set $I$, the maps from various sets to $X$ satisfying the given property are the free generating families of $X$ as $G$-set.
$endgroup$
add a comment |
$begingroup$
Free $G$-actions are free objects in the category of G-sets.
More precisely, a free object on a set $I$ in this category is the same as a free $G$-set $X$ endowed with a map $Ito G$ meeting once each orbit; the obvious way to produce it is just considering $X=Gtimes I$ with action $gcdot (h,i)=(gh,i)$ and the map $Ito X$, $imapsto (1,i)$.
For a free action on a set $I$, the maps from various sets to $X$ satisfying the given property are the free generating families of $X$ as $G$-set.
$endgroup$
add a comment |
$begingroup$
Free $G$-actions are free objects in the category of G-sets.
More precisely, a free object on a set $I$ in this category is the same as a free $G$-set $X$ endowed with a map $Ito G$ meeting once each orbit; the obvious way to produce it is just considering $X=Gtimes I$ with action $gcdot (h,i)=(gh,i)$ and the map $Ito X$, $imapsto (1,i)$.
For a free action on a set $I$, the maps from various sets to $X$ satisfying the given property are the free generating families of $X$ as $G$-set.
$endgroup$
Free $G$-actions are free objects in the category of G-sets.
More precisely, a free object on a set $I$ in this category is the same as a free $G$-set $X$ endowed with a map $Ito G$ meeting once each orbit; the obvious way to produce it is just considering $X=Gtimes I$ with action $gcdot (h,i)=(gh,i)$ and the map $Ito X$, $imapsto (1,i)$.
For a free action on a set $I$, the maps from various sets to $X$ satisfying the given property are the free generating families of $X$ as $G$-set.
answered Jan 11 at 3:09
community wiki
YCor
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052414%2fare-free-groups-and-free-actions-related%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
7
$begingroup$
Free actions are free objects in the category of $G$-sets. This is probably not where the name comes from, though. They both mean free as in unconstrained.
$endgroup$
– Qiaochu Yuan
Dec 25 '18 at 20:41
$begingroup$
"Free" is a common word, like "torsion-free" etc. They are not necessarily all related.
$endgroup$
– Dietrich Burde
Dec 25 '18 at 21:08
$begingroup$
@QiaochuYuan that should be an answer.
$endgroup$
– freakish
Dec 25 '18 at 21:38
$begingroup$
@QiaochuYuan I'll take that as an answer, Thank you!
$endgroup$
– Rei Henigman
Dec 26 '18 at 19:12
1
$begingroup$
Free groups are exactly the groups which act freely on trees(of course this is a very special case of a free action).
$endgroup$
– Paul Plummer
Dec 27 '18 at 17:29