prove there exist postive integers $a,b$ such $p^2|a^2+ab+b^2$












3












$begingroup$


Problem 1: Let prime $pequiv 1pmod 3$.show that:there exist postive integers $ale b<p$ such
$$p^2|a^2+ab+b^2$$



I have only prove there $a,b$ such $$p|a^2+ab+b^2$$



Problem 1 from this:



Problem 2.3 (Noam Elkies). Prove that there are infinitely many triples $(a,b,p)$ of integers, with $p$ prime and $0<aleq b<p$, for which $p^5$ divides $(a+b)^p-a^p-b^p$.





The key claim is that if $pequiv1pmod3$, then $$p(x^2+xy+y^2)^2;mathrm{divides};(x+y)^p-x^p-y^p$$ as polynomials in $x$ and $y$. $color{red}{underline{color{black}{text{Since it's known that}}}}$ one can select $a$ and $b$ such that $color{red}{underline{color{black}{p^2mid a^2+ab+b^2}}}$, the conclusion follows. (The theory of quadratic forms tells us we can do it with $p^2=a^2+ab+b^2$; Thue's lemma lets us do it by solving $x^2+x+1equiv0pmod{p^2}$.)



To prove this, it is the same to show that $$(x^2+x+1)^2;mathrm{divides};F(x)overset{mathrm{def}}=(x+1)^p-x^p-1.$$ since the binomial coefficients $binom pk$ are clearly divisible by $p$. Let $zeta$ be a third root of unity. Then $F(zeta)=(1+zeta)^p-zeta^p-1=-zeta^2-zeta-1=0$. Moreover, $F'(x)=p(x+1)^{p-1}-px^{p-1}$, so $F'(zeta)=p-p=0$. Hence $zeta$ is a double root of $F$ as needed.



(Incidentally, $p=2017$ works!)



Image that replaced the text










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Problem 1: Let prime $pequiv 1pmod 3$.show that:there exist postive integers $ale b<p$ such
    $$p^2|a^2+ab+b^2$$



    I have only prove there $a,b$ such $$p|a^2+ab+b^2$$



    Problem 1 from this:



    Problem 2.3 (Noam Elkies). Prove that there are infinitely many triples $(a,b,p)$ of integers, with $p$ prime and $0<aleq b<p$, for which $p^5$ divides $(a+b)^p-a^p-b^p$.





    The key claim is that if $pequiv1pmod3$, then $$p(x^2+xy+y^2)^2;mathrm{divides};(x+y)^p-x^p-y^p$$ as polynomials in $x$ and $y$. $color{red}{underline{color{black}{text{Since it's known that}}}}$ one can select $a$ and $b$ such that $color{red}{underline{color{black}{p^2mid a^2+ab+b^2}}}$, the conclusion follows. (The theory of quadratic forms tells us we can do it with $p^2=a^2+ab+b^2$; Thue's lemma lets us do it by solving $x^2+x+1equiv0pmod{p^2}$.)



    To prove this, it is the same to show that $$(x^2+x+1)^2;mathrm{divides};F(x)overset{mathrm{def}}=(x+1)^p-x^p-1.$$ since the binomial coefficients $binom pk$ are clearly divisible by $p$. Let $zeta$ be a third root of unity. Then $F(zeta)=(1+zeta)^p-zeta^p-1=-zeta^2-zeta-1=0$. Moreover, $F'(x)=p(x+1)^{p-1}-px^{p-1}$, so $F'(zeta)=p-p=0$. Hence $zeta$ is a double root of $F$ as needed.



    (Incidentally, $p=2017$ works!)



    Image that replaced the text










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      2



      $begingroup$


      Problem 1: Let prime $pequiv 1pmod 3$.show that:there exist postive integers $ale b<p$ such
      $$p^2|a^2+ab+b^2$$



      I have only prove there $a,b$ such $$p|a^2+ab+b^2$$



      Problem 1 from this:



      Problem 2.3 (Noam Elkies). Prove that there are infinitely many triples $(a,b,p)$ of integers, with $p$ prime and $0<aleq b<p$, for which $p^5$ divides $(a+b)^p-a^p-b^p$.





      The key claim is that if $pequiv1pmod3$, then $$p(x^2+xy+y^2)^2;mathrm{divides};(x+y)^p-x^p-y^p$$ as polynomials in $x$ and $y$. $color{red}{underline{color{black}{text{Since it's known that}}}}$ one can select $a$ and $b$ such that $color{red}{underline{color{black}{p^2mid a^2+ab+b^2}}}$, the conclusion follows. (The theory of quadratic forms tells us we can do it with $p^2=a^2+ab+b^2$; Thue's lemma lets us do it by solving $x^2+x+1equiv0pmod{p^2}$.)



      To prove this, it is the same to show that $$(x^2+x+1)^2;mathrm{divides};F(x)overset{mathrm{def}}=(x+1)^p-x^p-1.$$ since the binomial coefficients $binom pk$ are clearly divisible by $p$. Let $zeta$ be a third root of unity. Then $F(zeta)=(1+zeta)^p-zeta^p-1=-zeta^2-zeta-1=0$. Moreover, $F'(x)=p(x+1)^{p-1}-px^{p-1}$, so $F'(zeta)=p-p=0$. Hence $zeta$ is a double root of $F$ as needed.



      (Incidentally, $p=2017$ works!)



      Image that replaced the text










      share|cite|improve this question











      $endgroup$




      Problem 1: Let prime $pequiv 1pmod 3$.show that:there exist postive integers $ale b<p$ such
      $$p^2|a^2+ab+b^2$$



      I have only prove there $a,b$ such $$p|a^2+ab+b^2$$



      Problem 1 from this:



      Problem 2.3 (Noam Elkies). Prove that there are infinitely many triples $(a,b,p)$ of integers, with $p$ prime and $0<aleq b<p$, for which $p^5$ divides $(a+b)^p-a^p-b^p$.





      The key claim is that if $pequiv1pmod3$, then $$p(x^2+xy+y^2)^2;mathrm{divides};(x+y)^p-x^p-y^p$$ as polynomials in $x$ and $y$. $color{red}{underline{color{black}{text{Since it's known that}}}}$ one can select $a$ and $b$ such that $color{red}{underline{color{black}{p^2mid a^2+ab+b^2}}}$, the conclusion follows. (The theory of quadratic forms tells us we can do it with $p^2=a^2+ab+b^2$; Thue's lemma lets us do it by solving $x^2+x+1equiv0pmod{p^2}$.)



      To prove this, it is the same to show that $$(x^2+x+1)^2;mathrm{divides};F(x)overset{mathrm{def}}=(x+1)^p-x^p-1.$$ since the binomial coefficients $binom pk$ are clearly divisible by $p$. Let $zeta$ be a third root of unity. Then $F(zeta)=(1+zeta)^p-zeta^p-1=-zeta^2-zeta-1=0$. Moreover, $F'(x)=p(x+1)^{p-1}-px^{p-1}$, so $F'(zeta)=p-p=0$. Hence $zeta$ is a double root of $F$ as needed.



      (Incidentally, $p=2017$ works!)



      Image that replaced the text







      number-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 15 at 8:58









      manooooh

      5681517




      5681517










      asked Dec 12 '18 at 13:18









      geromtygeromty

      977423




      977423






















          3 Answers
          3






          active

          oldest

          votes


















          1





          +50







          $begingroup$

          Alternate solution via Thue's Lemma




          Proposition. Let $pequiv 1pmod 3$ be a prime. Then there is a solution to
          $$
          x^2+x+1equiv 0 pmod{p^2}
          $$




          Proof. By Quadratic Reciprocity, $-3$ is a quadratic residue $pmod p$, hence
          $$
          u^2 equiv -3 pmod p
          $$

          for some integer $u$. Setting $uequiv 2c+1pmod p$, this becomes
          $$
          c^2+c+1 equiv 0 pmod p
          $$

          So $c$ is a solution to $f(x):=x^2+x+1equiv 0pmod p$. Hensel's Lemma tells us that if
          $$
          f'(c)notequiv 0 pmod p
          $$

          Then there exists a unique $d=c+kp$ such that
          $$
          f(d) equiv 0 pmod{p^2}
          $$

          Since
          $$
          f'(c)^2 = (2c+1)^2 equiv -3 pmod p
          $$

          If $f'(c)equiv 0 pmod p$ then $0equiv -3pmod p$ which implies $p=3$. This contradicts $pequiv 1pmod 3$, therefore $f'(c)notequiv 0 pmod p$.



          Hence there is some $d$ such that
          $$
          d^2+d+1equiv 0 pmod{p^2}
          $$



          $$tag*{$square$}$$





          We now solve our main problem.




          Lemma. Let $pequiv 1pmod 3$ be a prime. Then there are integers $0<a,b<p$ such that
          $$
          a^2+ab+b^2equiv 0 pmod{p^2}
          $$




          Proof. We have shown that there is some integer $d$ such that
          $$
          d^2+d+1 equiv 0pmod{p^2}
          $$

          Now by Thue's Lemma, since $gcd(d,p^2)=1$, we can find $0<|a|,|b|<p$ such that
          $$
          db equiv a pmod{p^2}
          $$

          By rearranging the sign, we may assume that $b>0$ and $-p<a<p$. Now $a,b$ satisfies
          $$
          a^2+ab+b^2 equiv d^2b^2+db^2+b^2 equiv b^2(d^2+d+1)equiv 0 pmod{p^2}
          $$

          Therefore if $a> 0$ we have found our solution $0<a,b<p$. Otherwise, $a<0$ and we consider two cases ($-aneq b$, otherwise $dequiv -1pmod{p^2}$ contradicts $d^2+d+1equiv 0pmod{p^2}$):



          Case 1: $-a > b$

          We use the equality
          $$
          a^2+ab+b^2 = (-a-b)^2 + (-a-b)b + b^2
          $$

          and obtain a solution $(a',b') = (-a-b,b)$. Since $0<-a<p$ and $0<b<p$, we have $-a-b< p$. By assumption $0 <-a-b$, therefore $0 < a',b' < p$ and we are done.



          Case 2: $-a < b$

          We use another equality:
          $$
          a^2 + ab + b^2 = (-a)^2 + (-a)(a+b) + (a+b)^2
          $$

          and set the new solution as $(a',b') = (-a,a+b)$. Clearly $0 < a'=-a < p$. Since $-p < a < 0$ and $0 < b < p$, we get $a+b < p $. Finally, by assumption we have $0 < a+b$, therefore $0 < a+b=b' < p$. Hence we have a solution $0<a',b' < p$.



          $$tag*{$square$}$$



          This completes the proof.






          Extra. Let $0<a,b<p$ and
          $$a^2+ab+b^2equiv 0 pmod{p^2}$$
          for some odd $p$. Then
          $$a^2+ab+b^2 = p^2$$




          Proof. Since $0<a,b< p$, we have
          $$
          a^2 + ab + b^2 < 3p^2
          $$

          Morever, since $a^2+ab+b^2equiv 0 pmod{p^2}$, we must have $a^2+ab+b^2 = p^2$ or $2p^2$. If $a^2+ab+b^2=2p^2$ then
          $$
          a^2+ab+b^2 equiv 0 pmod 2
          $$

          There is no solution if $a$ or $b$ is odd, therefore both $a,b$ are even. But this means
          $$
          a^2+ab+b^2equiv 0 pmod 4
          $$

          Since $a^2+ab+b^2$ is also divisible by odd $p^2$, it is divisible by $4p^2$. This contradicts that $a^2+ab+b^2 < 3p^2$, therefore we must have
          $$
          a^2+ab+b^2 = p^2
          $$



          $$tag*{$square$}$$






          share|cite|improve this answer









          $endgroup$





















            3












            $begingroup$

            This relies on the following statement: if some residue class $a$ is a square mod $p$, then it is a square mod $p^2$.
            Indeed, if $b^2=a+tp [p^2]$, then $(b+kp)^2=a+(t+2k)p [p^2]$.



            So you know that there is some $x$ such that $p|x^2+x+1$, thus $-3=(2x-1)^2$ is a square mod $p$, thus mod $p^2$, and if $y^2=-3[p^2]$, then $a=(1+y)/2$ (mod $p^2$) and $1$ work.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Your LaTeX is broken
              $endgroup$
              – Lucas Henrique
              Dec 12 '18 at 13:33






            • 1




              $begingroup$
              Thanks, corrected!
              $endgroup$
              – Mindlack
              Dec 12 '18 at 13:34










            • $begingroup$
              I can't undertand your unswer,first your step ,what's mean
              $endgroup$
              – math110
              Dec 16 '18 at 15:22





















            1












            $begingroup$

            1. Solution to $p^2= X^2+3Y^2$



            It is well known that $pequiv 1pmod 3$ if and only if
            $$
            p=x^2+3y^2
            $$

            for some integers $x,y$. So immediately we have a presentation of $p^2$ as
            $$
            begin{align}
            p^2 &= (x^2+3y^2)^2\
            &=(x+sqrt{-3}y)^2(x-sqrt{-3}y)^2\
            &=((x^2-3y^2)+2xysqrt{-3})((x^2-3y^2)-2xysqrt{-3})\
            &=(x^2-3y^2)^2+3(2xy)^2
            end{align}
            $$





            2. Solution to $p^2=a^2+ab+b^2,quad 0leq a,b< p$



            The expression $u^2+3v^2$ can be rewritten in the following three ways:
            $$
            begin{align}
            u^2+3v^2 &= (pm u-v)^2 + (pm u-v)(2v) + (2v)^2\
            u^2+3v^2 &= (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
            end{align}
            $$

            From (1), we have
            $$
            p^2 = (x^2-3y)^2 + 3(2xy)^2
            $$

            Therefore applying any of the three transformations will already give us
            $$
            p^2 = a^2 + ab+b^2
            $$



            We shall show that depending on whether $x<y$, $y<x<3y$ or $3y<x$, exactly one of the previous transformations will give us a solution such that $0leq a,b<p$. (Clearly $xneq y$ and $xneq 3y$, or $p$ is not prime.)





            Case 2a: $x<y$



            We use the transformation
            $$
            u^2+3v^2 = (-u-v)^2 + (-u-v)(2v) + (2v)^2
            $$

            Hence
            $$
            begin{align}
            p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
            &= (3y^2-x^2-2xy)^2 + (3y^2-x^2-2xy)(4xy) + (4xy)^2\
            &= a^2+ab+b^2
            end{align}
            $$

            Hence
            $$
            begin{align}
            a &= 3y^2-x^2-2xy = (3y+x)(y-x)\
            b &= 4xy
            end{align}
            $$

            Since $0<x<y$, we get $0< a,b$. Next we check that
            $$
            begin{align}
            p-a &= x^2+3y^2 - (3y^2-x^2-2xy) = 2x^2+2xy > 0\
            p-b &= x^2+3y^2 - 4xy = (3y-x)(y-x) > 0
            end{align}
            $$

            Therefore $0< a,b < p$.





            Case 2b: $3y<x$



            We use the transformation
            $$
            u^2+3v^2 = (u-v)^2 + (u-v)(2v) + (2v)^2
            $$

            Hence
            $$
            begin{align}
            p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
            &= (x^2-3y^2-2xy)^2 + (x^2-3y^2-2xy)(4xy) + (4xy)^2\
            &= a^2+ab+b^2
            end{align}
            $$

            Hence
            $$
            begin{align}
            a &= x^2-3y^2-2xy = (x-3y)(x+y)\
            b &= 4xy
            end{align}
            $$

            Since $0<3y < x$, we get $0< a,b$. Next we check that
            $$
            begin{align}
            p-a &= x^2+3y^2 - (x^2-3y^2-2xy) = 6y^2+2xy > 0\
            p-b &= x^2+3y^2 - 4xy = (x-3y)(x-y) > 0
            end{align}
            $$

            Therefore $0< a,b < p$.





            Case 2c: $y<x<3y$



            We use the transformation
            $$
            u^2+3v^2 = (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
            $$

            Hence
            $$
            begin{align}
            p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
            &= (x^2-3y^2+2xy)^2 + (x^2-3y^2+2xy)(3y^2-x^2+2xy) + (3y^2-x^2+2xy)^2\
            &= a^2+ab+b^2
            end{align}
            $$

            Hence
            $$
            begin{align}
            a &= x^2-3y^2+2xy = (x+3y)(x-y)\
            b &= 3y^2-x^2+2xy = (3y-x)(y+x)
            end{align}
            $$

            Since $y<x < 3y$, we get $0< a,b$. Next we check that
            $$
            begin{align}
            p-a &= x^2+3y^2 - (x^2-3y^2+2xy) = 6y^2-2xy = 2y(3y-x) > 0\
            p-b &= x^2+3y^2 - (3y^2-x^2+2xy) = 2x^2-2xy = 2x(x-y) > 0
            end{align}
            $$

            Therefore $0< a,b < p$.



            This completes the proof.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036675%2fprove-there-exist-postive-integers-a-b-such-p2a2abb2%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1





              +50







              $begingroup$

              Alternate solution via Thue's Lemma




              Proposition. Let $pequiv 1pmod 3$ be a prime. Then there is a solution to
              $$
              x^2+x+1equiv 0 pmod{p^2}
              $$




              Proof. By Quadratic Reciprocity, $-3$ is a quadratic residue $pmod p$, hence
              $$
              u^2 equiv -3 pmod p
              $$

              for some integer $u$. Setting $uequiv 2c+1pmod p$, this becomes
              $$
              c^2+c+1 equiv 0 pmod p
              $$

              So $c$ is a solution to $f(x):=x^2+x+1equiv 0pmod p$. Hensel's Lemma tells us that if
              $$
              f'(c)notequiv 0 pmod p
              $$

              Then there exists a unique $d=c+kp$ such that
              $$
              f(d) equiv 0 pmod{p^2}
              $$

              Since
              $$
              f'(c)^2 = (2c+1)^2 equiv -3 pmod p
              $$

              If $f'(c)equiv 0 pmod p$ then $0equiv -3pmod p$ which implies $p=3$. This contradicts $pequiv 1pmod 3$, therefore $f'(c)notequiv 0 pmod p$.



              Hence there is some $d$ such that
              $$
              d^2+d+1equiv 0 pmod{p^2}
              $$



              $$tag*{$square$}$$





              We now solve our main problem.




              Lemma. Let $pequiv 1pmod 3$ be a prime. Then there are integers $0<a,b<p$ such that
              $$
              a^2+ab+b^2equiv 0 pmod{p^2}
              $$




              Proof. We have shown that there is some integer $d$ such that
              $$
              d^2+d+1 equiv 0pmod{p^2}
              $$

              Now by Thue's Lemma, since $gcd(d,p^2)=1$, we can find $0<|a|,|b|<p$ such that
              $$
              db equiv a pmod{p^2}
              $$

              By rearranging the sign, we may assume that $b>0$ and $-p<a<p$. Now $a,b$ satisfies
              $$
              a^2+ab+b^2 equiv d^2b^2+db^2+b^2 equiv b^2(d^2+d+1)equiv 0 pmod{p^2}
              $$

              Therefore if $a> 0$ we have found our solution $0<a,b<p$. Otherwise, $a<0$ and we consider two cases ($-aneq b$, otherwise $dequiv -1pmod{p^2}$ contradicts $d^2+d+1equiv 0pmod{p^2}$):



              Case 1: $-a > b$

              We use the equality
              $$
              a^2+ab+b^2 = (-a-b)^2 + (-a-b)b + b^2
              $$

              and obtain a solution $(a',b') = (-a-b,b)$. Since $0<-a<p$ and $0<b<p$, we have $-a-b< p$. By assumption $0 <-a-b$, therefore $0 < a',b' < p$ and we are done.



              Case 2: $-a < b$

              We use another equality:
              $$
              a^2 + ab + b^2 = (-a)^2 + (-a)(a+b) + (a+b)^2
              $$

              and set the new solution as $(a',b') = (-a,a+b)$. Clearly $0 < a'=-a < p$. Since $-p < a < 0$ and $0 < b < p$, we get $a+b < p $. Finally, by assumption we have $0 < a+b$, therefore $0 < a+b=b' < p$. Hence we have a solution $0<a',b' < p$.



              $$tag*{$square$}$$



              This completes the proof.






              Extra. Let $0<a,b<p$ and
              $$a^2+ab+b^2equiv 0 pmod{p^2}$$
              for some odd $p$. Then
              $$a^2+ab+b^2 = p^2$$




              Proof. Since $0<a,b< p$, we have
              $$
              a^2 + ab + b^2 < 3p^2
              $$

              Morever, since $a^2+ab+b^2equiv 0 pmod{p^2}$, we must have $a^2+ab+b^2 = p^2$ or $2p^2$. If $a^2+ab+b^2=2p^2$ then
              $$
              a^2+ab+b^2 equiv 0 pmod 2
              $$

              There is no solution if $a$ or $b$ is odd, therefore both $a,b$ are even. But this means
              $$
              a^2+ab+b^2equiv 0 pmod 4
              $$

              Since $a^2+ab+b^2$ is also divisible by odd $p^2$, it is divisible by $4p^2$. This contradicts that $a^2+ab+b^2 < 3p^2$, therefore we must have
              $$
              a^2+ab+b^2 = p^2
              $$



              $$tag*{$square$}$$






              share|cite|improve this answer









              $endgroup$


















                1





                +50







                $begingroup$

                Alternate solution via Thue's Lemma




                Proposition. Let $pequiv 1pmod 3$ be a prime. Then there is a solution to
                $$
                x^2+x+1equiv 0 pmod{p^2}
                $$




                Proof. By Quadratic Reciprocity, $-3$ is a quadratic residue $pmod p$, hence
                $$
                u^2 equiv -3 pmod p
                $$

                for some integer $u$. Setting $uequiv 2c+1pmod p$, this becomes
                $$
                c^2+c+1 equiv 0 pmod p
                $$

                So $c$ is a solution to $f(x):=x^2+x+1equiv 0pmod p$. Hensel's Lemma tells us that if
                $$
                f'(c)notequiv 0 pmod p
                $$

                Then there exists a unique $d=c+kp$ such that
                $$
                f(d) equiv 0 pmod{p^2}
                $$

                Since
                $$
                f'(c)^2 = (2c+1)^2 equiv -3 pmod p
                $$

                If $f'(c)equiv 0 pmod p$ then $0equiv -3pmod p$ which implies $p=3$. This contradicts $pequiv 1pmod 3$, therefore $f'(c)notequiv 0 pmod p$.



                Hence there is some $d$ such that
                $$
                d^2+d+1equiv 0 pmod{p^2}
                $$



                $$tag*{$square$}$$





                We now solve our main problem.




                Lemma. Let $pequiv 1pmod 3$ be a prime. Then there are integers $0<a,b<p$ such that
                $$
                a^2+ab+b^2equiv 0 pmod{p^2}
                $$




                Proof. We have shown that there is some integer $d$ such that
                $$
                d^2+d+1 equiv 0pmod{p^2}
                $$

                Now by Thue's Lemma, since $gcd(d,p^2)=1$, we can find $0<|a|,|b|<p$ such that
                $$
                db equiv a pmod{p^2}
                $$

                By rearranging the sign, we may assume that $b>0$ and $-p<a<p$. Now $a,b$ satisfies
                $$
                a^2+ab+b^2 equiv d^2b^2+db^2+b^2 equiv b^2(d^2+d+1)equiv 0 pmod{p^2}
                $$

                Therefore if $a> 0$ we have found our solution $0<a,b<p$. Otherwise, $a<0$ and we consider two cases ($-aneq b$, otherwise $dequiv -1pmod{p^2}$ contradicts $d^2+d+1equiv 0pmod{p^2}$):



                Case 1: $-a > b$

                We use the equality
                $$
                a^2+ab+b^2 = (-a-b)^2 + (-a-b)b + b^2
                $$

                and obtain a solution $(a',b') = (-a-b,b)$. Since $0<-a<p$ and $0<b<p$, we have $-a-b< p$. By assumption $0 <-a-b$, therefore $0 < a',b' < p$ and we are done.



                Case 2: $-a < b$

                We use another equality:
                $$
                a^2 + ab + b^2 = (-a)^2 + (-a)(a+b) + (a+b)^2
                $$

                and set the new solution as $(a',b') = (-a,a+b)$. Clearly $0 < a'=-a < p$. Since $-p < a < 0$ and $0 < b < p$, we get $a+b < p $. Finally, by assumption we have $0 < a+b$, therefore $0 < a+b=b' < p$. Hence we have a solution $0<a',b' < p$.



                $$tag*{$square$}$$



                This completes the proof.






                Extra. Let $0<a,b<p$ and
                $$a^2+ab+b^2equiv 0 pmod{p^2}$$
                for some odd $p$. Then
                $$a^2+ab+b^2 = p^2$$




                Proof. Since $0<a,b< p$, we have
                $$
                a^2 + ab + b^2 < 3p^2
                $$

                Morever, since $a^2+ab+b^2equiv 0 pmod{p^2}$, we must have $a^2+ab+b^2 = p^2$ or $2p^2$. If $a^2+ab+b^2=2p^2$ then
                $$
                a^2+ab+b^2 equiv 0 pmod 2
                $$

                There is no solution if $a$ or $b$ is odd, therefore both $a,b$ are even. But this means
                $$
                a^2+ab+b^2equiv 0 pmod 4
                $$

                Since $a^2+ab+b^2$ is also divisible by odd $p^2$, it is divisible by $4p^2$. This contradicts that $a^2+ab+b^2 < 3p^2$, therefore we must have
                $$
                a^2+ab+b^2 = p^2
                $$



                $$tag*{$square$}$$






                share|cite|improve this answer









                $endgroup$
















                  1





                  +50







                  1





                  +50



                  1




                  +50



                  $begingroup$

                  Alternate solution via Thue's Lemma




                  Proposition. Let $pequiv 1pmod 3$ be a prime. Then there is a solution to
                  $$
                  x^2+x+1equiv 0 pmod{p^2}
                  $$




                  Proof. By Quadratic Reciprocity, $-3$ is a quadratic residue $pmod p$, hence
                  $$
                  u^2 equiv -3 pmod p
                  $$

                  for some integer $u$. Setting $uequiv 2c+1pmod p$, this becomes
                  $$
                  c^2+c+1 equiv 0 pmod p
                  $$

                  So $c$ is a solution to $f(x):=x^2+x+1equiv 0pmod p$. Hensel's Lemma tells us that if
                  $$
                  f'(c)notequiv 0 pmod p
                  $$

                  Then there exists a unique $d=c+kp$ such that
                  $$
                  f(d) equiv 0 pmod{p^2}
                  $$

                  Since
                  $$
                  f'(c)^2 = (2c+1)^2 equiv -3 pmod p
                  $$

                  If $f'(c)equiv 0 pmod p$ then $0equiv -3pmod p$ which implies $p=3$. This contradicts $pequiv 1pmod 3$, therefore $f'(c)notequiv 0 pmod p$.



                  Hence there is some $d$ such that
                  $$
                  d^2+d+1equiv 0 pmod{p^2}
                  $$



                  $$tag*{$square$}$$





                  We now solve our main problem.




                  Lemma. Let $pequiv 1pmod 3$ be a prime. Then there are integers $0<a,b<p$ such that
                  $$
                  a^2+ab+b^2equiv 0 pmod{p^2}
                  $$




                  Proof. We have shown that there is some integer $d$ such that
                  $$
                  d^2+d+1 equiv 0pmod{p^2}
                  $$

                  Now by Thue's Lemma, since $gcd(d,p^2)=1$, we can find $0<|a|,|b|<p$ such that
                  $$
                  db equiv a pmod{p^2}
                  $$

                  By rearranging the sign, we may assume that $b>0$ and $-p<a<p$. Now $a,b$ satisfies
                  $$
                  a^2+ab+b^2 equiv d^2b^2+db^2+b^2 equiv b^2(d^2+d+1)equiv 0 pmod{p^2}
                  $$

                  Therefore if $a> 0$ we have found our solution $0<a,b<p$. Otherwise, $a<0$ and we consider two cases ($-aneq b$, otherwise $dequiv -1pmod{p^2}$ contradicts $d^2+d+1equiv 0pmod{p^2}$):



                  Case 1: $-a > b$

                  We use the equality
                  $$
                  a^2+ab+b^2 = (-a-b)^2 + (-a-b)b + b^2
                  $$

                  and obtain a solution $(a',b') = (-a-b,b)$. Since $0<-a<p$ and $0<b<p$, we have $-a-b< p$. By assumption $0 <-a-b$, therefore $0 < a',b' < p$ and we are done.



                  Case 2: $-a < b$

                  We use another equality:
                  $$
                  a^2 + ab + b^2 = (-a)^2 + (-a)(a+b) + (a+b)^2
                  $$

                  and set the new solution as $(a',b') = (-a,a+b)$. Clearly $0 < a'=-a < p$. Since $-p < a < 0$ and $0 < b < p$, we get $a+b < p $. Finally, by assumption we have $0 < a+b$, therefore $0 < a+b=b' < p$. Hence we have a solution $0<a',b' < p$.



                  $$tag*{$square$}$$



                  This completes the proof.






                  Extra. Let $0<a,b<p$ and
                  $$a^2+ab+b^2equiv 0 pmod{p^2}$$
                  for some odd $p$. Then
                  $$a^2+ab+b^2 = p^2$$




                  Proof. Since $0<a,b< p$, we have
                  $$
                  a^2 + ab + b^2 < 3p^2
                  $$

                  Morever, since $a^2+ab+b^2equiv 0 pmod{p^2}$, we must have $a^2+ab+b^2 = p^2$ or $2p^2$. If $a^2+ab+b^2=2p^2$ then
                  $$
                  a^2+ab+b^2 equiv 0 pmod 2
                  $$

                  There is no solution if $a$ or $b$ is odd, therefore both $a,b$ are even. But this means
                  $$
                  a^2+ab+b^2equiv 0 pmod 4
                  $$

                  Since $a^2+ab+b^2$ is also divisible by odd $p^2$, it is divisible by $4p^2$. This contradicts that $a^2+ab+b^2 < 3p^2$, therefore we must have
                  $$
                  a^2+ab+b^2 = p^2
                  $$



                  $$tag*{$square$}$$






                  share|cite|improve this answer









                  $endgroup$



                  Alternate solution via Thue's Lemma




                  Proposition. Let $pequiv 1pmod 3$ be a prime. Then there is a solution to
                  $$
                  x^2+x+1equiv 0 pmod{p^2}
                  $$




                  Proof. By Quadratic Reciprocity, $-3$ is a quadratic residue $pmod p$, hence
                  $$
                  u^2 equiv -3 pmod p
                  $$

                  for some integer $u$. Setting $uequiv 2c+1pmod p$, this becomes
                  $$
                  c^2+c+1 equiv 0 pmod p
                  $$

                  So $c$ is a solution to $f(x):=x^2+x+1equiv 0pmod p$. Hensel's Lemma tells us that if
                  $$
                  f'(c)notequiv 0 pmod p
                  $$

                  Then there exists a unique $d=c+kp$ such that
                  $$
                  f(d) equiv 0 pmod{p^2}
                  $$

                  Since
                  $$
                  f'(c)^2 = (2c+1)^2 equiv -3 pmod p
                  $$

                  If $f'(c)equiv 0 pmod p$ then $0equiv -3pmod p$ which implies $p=3$. This contradicts $pequiv 1pmod 3$, therefore $f'(c)notequiv 0 pmod p$.



                  Hence there is some $d$ such that
                  $$
                  d^2+d+1equiv 0 pmod{p^2}
                  $$



                  $$tag*{$square$}$$





                  We now solve our main problem.




                  Lemma. Let $pequiv 1pmod 3$ be a prime. Then there are integers $0<a,b<p$ such that
                  $$
                  a^2+ab+b^2equiv 0 pmod{p^2}
                  $$




                  Proof. We have shown that there is some integer $d$ such that
                  $$
                  d^2+d+1 equiv 0pmod{p^2}
                  $$

                  Now by Thue's Lemma, since $gcd(d,p^2)=1$, we can find $0<|a|,|b|<p$ such that
                  $$
                  db equiv a pmod{p^2}
                  $$

                  By rearranging the sign, we may assume that $b>0$ and $-p<a<p$. Now $a,b$ satisfies
                  $$
                  a^2+ab+b^2 equiv d^2b^2+db^2+b^2 equiv b^2(d^2+d+1)equiv 0 pmod{p^2}
                  $$

                  Therefore if $a> 0$ we have found our solution $0<a,b<p$. Otherwise, $a<0$ and we consider two cases ($-aneq b$, otherwise $dequiv -1pmod{p^2}$ contradicts $d^2+d+1equiv 0pmod{p^2}$):



                  Case 1: $-a > b$

                  We use the equality
                  $$
                  a^2+ab+b^2 = (-a-b)^2 + (-a-b)b + b^2
                  $$

                  and obtain a solution $(a',b') = (-a-b,b)$. Since $0<-a<p$ and $0<b<p$, we have $-a-b< p$. By assumption $0 <-a-b$, therefore $0 < a',b' < p$ and we are done.



                  Case 2: $-a < b$

                  We use another equality:
                  $$
                  a^2 + ab + b^2 = (-a)^2 + (-a)(a+b) + (a+b)^2
                  $$

                  and set the new solution as $(a',b') = (-a,a+b)$. Clearly $0 < a'=-a < p$. Since $-p < a < 0$ and $0 < b < p$, we get $a+b < p $. Finally, by assumption we have $0 < a+b$, therefore $0 < a+b=b' < p$. Hence we have a solution $0<a',b' < p$.



                  $$tag*{$square$}$$



                  This completes the proof.






                  Extra. Let $0<a,b<p$ and
                  $$a^2+ab+b^2equiv 0 pmod{p^2}$$
                  for some odd $p$. Then
                  $$a^2+ab+b^2 = p^2$$




                  Proof. Since $0<a,b< p$, we have
                  $$
                  a^2 + ab + b^2 < 3p^2
                  $$

                  Morever, since $a^2+ab+b^2equiv 0 pmod{p^2}$, we must have $a^2+ab+b^2 = p^2$ or $2p^2$. If $a^2+ab+b^2=2p^2$ then
                  $$
                  a^2+ab+b^2 equiv 0 pmod 2
                  $$

                  There is no solution if $a$ or $b$ is odd, therefore both $a,b$ are even. But this means
                  $$
                  a^2+ab+b^2equiv 0 pmod 4
                  $$

                  Since $a^2+ab+b^2$ is also divisible by odd $p^2$, it is divisible by $4p^2$. This contradicts that $a^2+ab+b^2 < 3p^2$, therefore we must have
                  $$
                  a^2+ab+b^2 = p^2
                  $$



                  $$tag*{$square$}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 15 at 6:49









                  Yong Hao NgYong Hao Ng

                  3,5691222




                  3,5691222























                      3












                      $begingroup$

                      This relies on the following statement: if some residue class $a$ is a square mod $p$, then it is a square mod $p^2$.
                      Indeed, if $b^2=a+tp [p^2]$, then $(b+kp)^2=a+(t+2k)p [p^2]$.



                      So you know that there is some $x$ such that $p|x^2+x+1$, thus $-3=(2x-1)^2$ is a square mod $p$, thus mod $p^2$, and if $y^2=-3[p^2]$, then $a=(1+y)/2$ (mod $p^2$) and $1$ work.






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Your LaTeX is broken
                        $endgroup$
                        – Lucas Henrique
                        Dec 12 '18 at 13:33






                      • 1




                        $begingroup$
                        Thanks, corrected!
                        $endgroup$
                        – Mindlack
                        Dec 12 '18 at 13:34










                      • $begingroup$
                        I can't undertand your unswer,first your step ,what's mean
                        $endgroup$
                        – math110
                        Dec 16 '18 at 15:22


















                      3












                      $begingroup$

                      This relies on the following statement: if some residue class $a$ is a square mod $p$, then it is a square mod $p^2$.
                      Indeed, if $b^2=a+tp [p^2]$, then $(b+kp)^2=a+(t+2k)p [p^2]$.



                      So you know that there is some $x$ such that $p|x^2+x+1$, thus $-3=(2x-1)^2$ is a square mod $p$, thus mod $p^2$, and if $y^2=-3[p^2]$, then $a=(1+y)/2$ (mod $p^2$) and $1$ work.






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Your LaTeX is broken
                        $endgroup$
                        – Lucas Henrique
                        Dec 12 '18 at 13:33






                      • 1




                        $begingroup$
                        Thanks, corrected!
                        $endgroup$
                        – Mindlack
                        Dec 12 '18 at 13:34










                      • $begingroup$
                        I can't undertand your unswer,first your step ,what's mean
                        $endgroup$
                        – math110
                        Dec 16 '18 at 15:22
















                      3












                      3








                      3





                      $begingroup$

                      This relies on the following statement: if some residue class $a$ is a square mod $p$, then it is a square mod $p^2$.
                      Indeed, if $b^2=a+tp [p^2]$, then $(b+kp)^2=a+(t+2k)p [p^2]$.



                      So you know that there is some $x$ such that $p|x^2+x+1$, thus $-3=(2x-1)^2$ is a square mod $p$, thus mod $p^2$, and if $y^2=-3[p^2]$, then $a=(1+y)/2$ (mod $p^2$) and $1$ work.






                      share|cite|improve this answer











                      $endgroup$



                      This relies on the following statement: if some residue class $a$ is a square mod $p$, then it is a square mod $p^2$.
                      Indeed, if $b^2=a+tp [p^2]$, then $(b+kp)^2=a+(t+2k)p [p^2]$.



                      So you know that there is some $x$ such that $p|x^2+x+1$, thus $-3=(2x-1)^2$ is a square mod $p$, thus mod $p^2$, and if $y^2=-3[p^2]$, then $a=(1+y)/2$ (mod $p^2$) and $1$ work.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Dec 12 '18 at 13:34

























                      answered Dec 12 '18 at 13:32









                      MindlackMindlack

                      3,73518




                      3,73518












                      • $begingroup$
                        Your LaTeX is broken
                        $endgroup$
                        – Lucas Henrique
                        Dec 12 '18 at 13:33






                      • 1




                        $begingroup$
                        Thanks, corrected!
                        $endgroup$
                        – Mindlack
                        Dec 12 '18 at 13:34










                      • $begingroup$
                        I can't undertand your unswer,first your step ,what's mean
                        $endgroup$
                        – math110
                        Dec 16 '18 at 15:22




















                      • $begingroup$
                        Your LaTeX is broken
                        $endgroup$
                        – Lucas Henrique
                        Dec 12 '18 at 13:33






                      • 1




                        $begingroup$
                        Thanks, corrected!
                        $endgroup$
                        – Mindlack
                        Dec 12 '18 at 13:34










                      • $begingroup$
                        I can't undertand your unswer,first your step ,what's mean
                        $endgroup$
                        – math110
                        Dec 16 '18 at 15:22


















                      $begingroup$
                      Your LaTeX is broken
                      $endgroup$
                      – Lucas Henrique
                      Dec 12 '18 at 13:33




                      $begingroup$
                      Your LaTeX is broken
                      $endgroup$
                      – Lucas Henrique
                      Dec 12 '18 at 13:33




                      1




                      1




                      $begingroup$
                      Thanks, corrected!
                      $endgroup$
                      – Mindlack
                      Dec 12 '18 at 13:34




                      $begingroup$
                      Thanks, corrected!
                      $endgroup$
                      – Mindlack
                      Dec 12 '18 at 13:34












                      $begingroup$
                      I can't undertand your unswer,first your step ,what's mean
                      $endgroup$
                      – math110
                      Dec 16 '18 at 15:22






                      $begingroup$
                      I can't undertand your unswer,first your step ,what's mean
                      $endgroup$
                      – math110
                      Dec 16 '18 at 15:22













                      1












                      $begingroup$

                      1. Solution to $p^2= X^2+3Y^2$



                      It is well known that $pequiv 1pmod 3$ if and only if
                      $$
                      p=x^2+3y^2
                      $$

                      for some integers $x,y$. So immediately we have a presentation of $p^2$ as
                      $$
                      begin{align}
                      p^2 &= (x^2+3y^2)^2\
                      &=(x+sqrt{-3}y)^2(x-sqrt{-3}y)^2\
                      &=((x^2-3y^2)+2xysqrt{-3})((x^2-3y^2)-2xysqrt{-3})\
                      &=(x^2-3y^2)^2+3(2xy)^2
                      end{align}
                      $$





                      2. Solution to $p^2=a^2+ab+b^2,quad 0leq a,b< p$



                      The expression $u^2+3v^2$ can be rewritten in the following three ways:
                      $$
                      begin{align}
                      u^2+3v^2 &= (pm u-v)^2 + (pm u-v)(2v) + (2v)^2\
                      u^2+3v^2 &= (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
                      end{align}
                      $$

                      From (1), we have
                      $$
                      p^2 = (x^2-3y)^2 + 3(2xy)^2
                      $$

                      Therefore applying any of the three transformations will already give us
                      $$
                      p^2 = a^2 + ab+b^2
                      $$



                      We shall show that depending on whether $x<y$, $y<x<3y$ or $3y<x$, exactly one of the previous transformations will give us a solution such that $0leq a,b<p$. (Clearly $xneq y$ and $xneq 3y$, or $p$ is not prime.)





                      Case 2a: $x<y$



                      We use the transformation
                      $$
                      u^2+3v^2 = (-u-v)^2 + (-u-v)(2v) + (2v)^2
                      $$

                      Hence
                      $$
                      begin{align}
                      p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                      &= (3y^2-x^2-2xy)^2 + (3y^2-x^2-2xy)(4xy) + (4xy)^2\
                      &= a^2+ab+b^2
                      end{align}
                      $$

                      Hence
                      $$
                      begin{align}
                      a &= 3y^2-x^2-2xy = (3y+x)(y-x)\
                      b &= 4xy
                      end{align}
                      $$

                      Since $0<x<y$, we get $0< a,b$. Next we check that
                      $$
                      begin{align}
                      p-a &= x^2+3y^2 - (3y^2-x^2-2xy) = 2x^2+2xy > 0\
                      p-b &= x^2+3y^2 - 4xy = (3y-x)(y-x) > 0
                      end{align}
                      $$

                      Therefore $0< a,b < p$.





                      Case 2b: $3y<x$



                      We use the transformation
                      $$
                      u^2+3v^2 = (u-v)^2 + (u-v)(2v) + (2v)^2
                      $$

                      Hence
                      $$
                      begin{align}
                      p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                      &= (x^2-3y^2-2xy)^2 + (x^2-3y^2-2xy)(4xy) + (4xy)^2\
                      &= a^2+ab+b^2
                      end{align}
                      $$

                      Hence
                      $$
                      begin{align}
                      a &= x^2-3y^2-2xy = (x-3y)(x+y)\
                      b &= 4xy
                      end{align}
                      $$

                      Since $0<3y < x$, we get $0< a,b$. Next we check that
                      $$
                      begin{align}
                      p-a &= x^2+3y^2 - (x^2-3y^2-2xy) = 6y^2+2xy > 0\
                      p-b &= x^2+3y^2 - 4xy = (x-3y)(x-y) > 0
                      end{align}
                      $$

                      Therefore $0< a,b < p$.





                      Case 2c: $y<x<3y$



                      We use the transformation
                      $$
                      u^2+3v^2 = (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
                      $$

                      Hence
                      $$
                      begin{align}
                      p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                      &= (x^2-3y^2+2xy)^2 + (x^2-3y^2+2xy)(3y^2-x^2+2xy) + (3y^2-x^2+2xy)^2\
                      &= a^2+ab+b^2
                      end{align}
                      $$

                      Hence
                      $$
                      begin{align}
                      a &= x^2-3y^2+2xy = (x+3y)(x-y)\
                      b &= 3y^2-x^2+2xy = (3y-x)(y+x)
                      end{align}
                      $$

                      Since $y<x < 3y$, we get $0< a,b$. Next we check that
                      $$
                      begin{align}
                      p-a &= x^2+3y^2 - (x^2-3y^2+2xy) = 6y^2-2xy = 2y(3y-x) > 0\
                      p-b &= x^2+3y^2 - (3y^2-x^2+2xy) = 2x^2-2xy = 2x(x-y) > 0
                      end{align}
                      $$

                      Therefore $0< a,b < p$.



                      This completes the proof.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        1. Solution to $p^2= X^2+3Y^2$



                        It is well known that $pequiv 1pmod 3$ if and only if
                        $$
                        p=x^2+3y^2
                        $$

                        for some integers $x,y$. So immediately we have a presentation of $p^2$ as
                        $$
                        begin{align}
                        p^2 &= (x^2+3y^2)^2\
                        &=(x+sqrt{-3}y)^2(x-sqrt{-3}y)^2\
                        &=((x^2-3y^2)+2xysqrt{-3})((x^2-3y^2)-2xysqrt{-3})\
                        &=(x^2-3y^2)^2+3(2xy)^2
                        end{align}
                        $$





                        2. Solution to $p^2=a^2+ab+b^2,quad 0leq a,b< p$



                        The expression $u^2+3v^2$ can be rewritten in the following three ways:
                        $$
                        begin{align}
                        u^2+3v^2 &= (pm u-v)^2 + (pm u-v)(2v) + (2v)^2\
                        u^2+3v^2 &= (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
                        end{align}
                        $$

                        From (1), we have
                        $$
                        p^2 = (x^2-3y)^2 + 3(2xy)^2
                        $$

                        Therefore applying any of the three transformations will already give us
                        $$
                        p^2 = a^2 + ab+b^2
                        $$



                        We shall show that depending on whether $x<y$, $y<x<3y$ or $3y<x$, exactly one of the previous transformations will give us a solution such that $0leq a,b<p$. (Clearly $xneq y$ and $xneq 3y$, or $p$ is not prime.)





                        Case 2a: $x<y$



                        We use the transformation
                        $$
                        u^2+3v^2 = (-u-v)^2 + (-u-v)(2v) + (2v)^2
                        $$

                        Hence
                        $$
                        begin{align}
                        p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                        &= (3y^2-x^2-2xy)^2 + (3y^2-x^2-2xy)(4xy) + (4xy)^2\
                        &= a^2+ab+b^2
                        end{align}
                        $$

                        Hence
                        $$
                        begin{align}
                        a &= 3y^2-x^2-2xy = (3y+x)(y-x)\
                        b &= 4xy
                        end{align}
                        $$

                        Since $0<x<y$, we get $0< a,b$. Next we check that
                        $$
                        begin{align}
                        p-a &= x^2+3y^2 - (3y^2-x^2-2xy) = 2x^2+2xy > 0\
                        p-b &= x^2+3y^2 - 4xy = (3y-x)(y-x) > 0
                        end{align}
                        $$

                        Therefore $0< a,b < p$.





                        Case 2b: $3y<x$



                        We use the transformation
                        $$
                        u^2+3v^2 = (u-v)^2 + (u-v)(2v) + (2v)^2
                        $$

                        Hence
                        $$
                        begin{align}
                        p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                        &= (x^2-3y^2-2xy)^2 + (x^2-3y^2-2xy)(4xy) + (4xy)^2\
                        &= a^2+ab+b^2
                        end{align}
                        $$

                        Hence
                        $$
                        begin{align}
                        a &= x^2-3y^2-2xy = (x-3y)(x+y)\
                        b &= 4xy
                        end{align}
                        $$

                        Since $0<3y < x$, we get $0< a,b$. Next we check that
                        $$
                        begin{align}
                        p-a &= x^2+3y^2 - (x^2-3y^2-2xy) = 6y^2+2xy > 0\
                        p-b &= x^2+3y^2 - 4xy = (x-3y)(x-y) > 0
                        end{align}
                        $$

                        Therefore $0< a,b < p$.





                        Case 2c: $y<x<3y$



                        We use the transformation
                        $$
                        u^2+3v^2 = (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
                        $$

                        Hence
                        $$
                        begin{align}
                        p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                        &= (x^2-3y^2+2xy)^2 + (x^2-3y^2+2xy)(3y^2-x^2+2xy) + (3y^2-x^2+2xy)^2\
                        &= a^2+ab+b^2
                        end{align}
                        $$

                        Hence
                        $$
                        begin{align}
                        a &= x^2-3y^2+2xy = (x+3y)(x-y)\
                        b &= 3y^2-x^2+2xy = (3y-x)(y+x)
                        end{align}
                        $$

                        Since $y<x < 3y$, we get $0< a,b$. Next we check that
                        $$
                        begin{align}
                        p-a &= x^2+3y^2 - (x^2-3y^2+2xy) = 6y^2-2xy = 2y(3y-x) > 0\
                        p-b &= x^2+3y^2 - (3y^2-x^2+2xy) = 2x^2-2xy = 2x(x-y) > 0
                        end{align}
                        $$

                        Therefore $0< a,b < p$.



                        This completes the proof.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          1. Solution to $p^2= X^2+3Y^2$



                          It is well known that $pequiv 1pmod 3$ if and only if
                          $$
                          p=x^2+3y^2
                          $$

                          for some integers $x,y$. So immediately we have a presentation of $p^2$ as
                          $$
                          begin{align}
                          p^2 &= (x^2+3y^2)^2\
                          &=(x+sqrt{-3}y)^2(x-sqrt{-3}y)^2\
                          &=((x^2-3y^2)+2xysqrt{-3})((x^2-3y^2)-2xysqrt{-3})\
                          &=(x^2-3y^2)^2+3(2xy)^2
                          end{align}
                          $$





                          2. Solution to $p^2=a^2+ab+b^2,quad 0leq a,b< p$



                          The expression $u^2+3v^2$ can be rewritten in the following three ways:
                          $$
                          begin{align}
                          u^2+3v^2 &= (pm u-v)^2 + (pm u-v)(2v) + (2v)^2\
                          u^2+3v^2 &= (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
                          end{align}
                          $$

                          From (1), we have
                          $$
                          p^2 = (x^2-3y)^2 + 3(2xy)^2
                          $$

                          Therefore applying any of the three transformations will already give us
                          $$
                          p^2 = a^2 + ab+b^2
                          $$



                          We shall show that depending on whether $x<y$, $y<x<3y$ or $3y<x$, exactly one of the previous transformations will give us a solution such that $0leq a,b<p$. (Clearly $xneq y$ and $xneq 3y$, or $p$ is not prime.)





                          Case 2a: $x<y$



                          We use the transformation
                          $$
                          u^2+3v^2 = (-u-v)^2 + (-u-v)(2v) + (2v)^2
                          $$

                          Hence
                          $$
                          begin{align}
                          p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                          &= (3y^2-x^2-2xy)^2 + (3y^2-x^2-2xy)(4xy) + (4xy)^2\
                          &= a^2+ab+b^2
                          end{align}
                          $$

                          Hence
                          $$
                          begin{align}
                          a &= 3y^2-x^2-2xy = (3y+x)(y-x)\
                          b &= 4xy
                          end{align}
                          $$

                          Since $0<x<y$, we get $0< a,b$. Next we check that
                          $$
                          begin{align}
                          p-a &= x^2+3y^2 - (3y^2-x^2-2xy) = 2x^2+2xy > 0\
                          p-b &= x^2+3y^2 - 4xy = (3y-x)(y-x) > 0
                          end{align}
                          $$

                          Therefore $0< a,b < p$.





                          Case 2b: $3y<x$



                          We use the transformation
                          $$
                          u^2+3v^2 = (u-v)^2 + (u-v)(2v) + (2v)^2
                          $$

                          Hence
                          $$
                          begin{align}
                          p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                          &= (x^2-3y^2-2xy)^2 + (x^2-3y^2-2xy)(4xy) + (4xy)^2\
                          &= a^2+ab+b^2
                          end{align}
                          $$

                          Hence
                          $$
                          begin{align}
                          a &= x^2-3y^2-2xy = (x-3y)(x+y)\
                          b &= 4xy
                          end{align}
                          $$

                          Since $0<3y < x$, we get $0< a,b$. Next we check that
                          $$
                          begin{align}
                          p-a &= x^2+3y^2 - (x^2-3y^2-2xy) = 6y^2+2xy > 0\
                          p-b &= x^2+3y^2 - 4xy = (x-3y)(x-y) > 0
                          end{align}
                          $$

                          Therefore $0< a,b < p$.





                          Case 2c: $y<x<3y$



                          We use the transformation
                          $$
                          u^2+3v^2 = (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
                          $$

                          Hence
                          $$
                          begin{align}
                          p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                          &= (x^2-3y^2+2xy)^2 + (x^2-3y^2+2xy)(3y^2-x^2+2xy) + (3y^2-x^2+2xy)^2\
                          &= a^2+ab+b^2
                          end{align}
                          $$

                          Hence
                          $$
                          begin{align}
                          a &= x^2-3y^2+2xy = (x+3y)(x-y)\
                          b &= 3y^2-x^2+2xy = (3y-x)(y+x)
                          end{align}
                          $$

                          Since $y<x < 3y$, we get $0< a,b$. Next we check that
                          $$
                          begin{align}
                          p-a &= x^2+3y^2 - (x^2-3y^2+2xy) = 6y^2-2xy = 2y(3y-x) > 0\
                          p-b &= x^2+3y^2 - (3y^2-x^2+2xy) = 2x^2-2xy = 2x(x-y) > 0
                          end{align}
                          $$

                          Therefore $0< a,b < p$.



                          This completes the proof.






                          share|cite|improve this answer









                          $endgroup$



                          1. Solution to $p^2= X^2+3Y^2$



                          It is well known that $pequiv 1pmod 3$ if and only if
                          $$
                          p=x^2+3y^2
                          $$

                          for some integers $x,y$. So immediately we have a presentation of $p^2$ as
                          $$
                          begin{align}
                          p^2 &= (x^2+3y^2)^2\
                          &=(x+sqrt{-3}y)^2(x-sqrt{-3}y)^2\
                          &=((x^2-3y^2)+2xysqrt{-3})((x^2-3y^2)-2xysqrt{-3})\
                          &=(x^2-3y^2)^2+3(2xy)^2
                          end{align}
                          $$





                          2. Solution to $p^2=a^2+ab+b^2,quad 0leq a,b< p$



                          The expression $u^2+3v^2$ can be rewritten in the following three ways:
                          $$
                          begin{align}
                          u^2+3v^2 &= (pm u-v)^2 + (pm u-v)(2v) + (2v)^2\
                          u^2+3v^2 &= (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
                          end{align}
                          $$

                          From (1), we have
                          $$
                          p^2 = (x^2-3y)^2 + 3(2xy)^2
                          $$

                          Therefore applying any of the three transformations will already give us
                          $$
                          p^2 = a^2 + ab+b^2
                          $$



                          We shall show that depending on whether $x<y$, $y<x<3y$ or $3y<x$, exactly one of the previous transformations will give us a solution such that $0leq a,b<p$. (Clearly $xneq y$ and $xneq 3y$, or $p$ is not prime.)





                          Case 2a: $x<y$



                          We use the transformation
                          $$
                          u^2+3v^2 = (-u-v)^2 + (-u-v)(2v) + (2v)^2
                          $$

                          Hence
                          $$
                          begin{align}
                          p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                          &= (3y^2-x^2-2xy)^2 + (3y^2-x^2-2xy)(4xy) + (4xy)^2\
                          &= a^2+ab+b^2
                          end{align}
                          $$

                          Hence
                          $$
                          begin{align}
                          a &= 3y^2-x^2-2xy = (3y+x)(y-x)\
                          b &= 4xy
                          end{align}
                          $$

                          Since $0<x<y$, we get $0< a,b$. Next we check that
                          $$
                          begin{align}
                          p-a &= x^2+3y^2 - (3y^2-x^2-2xy) = 2x^2+2xy > 0\
                          p-b &= x^2+3y^2 - 4xy = (3y-x)(y-x) > 0
                          end{align}
                          $$

                          Therefore $0< a,b < p$.





                          Case 2b: $3y<x$



                          We use the transformation
                          $$
                          u^2+3v^2 = (u-v)^2 + (u-v)(2v) + (2v)^2
                          $$

                          Hence
                          $$
                          begin{align}
                          p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                          &= (x^2-3y^2-2xy)^2 + (x^2-3y^2-2xy)(4xy) + (4xy)^2\
                          &= a^2+ab+b^2
                          end{align}
                          $$

                          Hence
                          $$
                          begin{align}
                          a &= x^2-3y^2-2xy = (x-3y)(x+y)\
                          b &= 4xy
                          end{align}
                          $$

                          Since $0<3y < x$, we get $0< a,b$. Next we check that
                          $$
                          begin{align}
                          p-a &= x^2+3y^2 - (x^2-3y^2-2xy) = 6y^2+2xy > 0\
                          p-b &= x^2+3y^2 - 4xy = (x-3y)(x-y) > 0
                          end{align}
                          $$

                          Therefore $0< a,b < p$.





                          Case 2c: $y<x<3y$



                          We use the transformation
                          $$
                          u^2+3v^2 = (u+v)^2 + (u+v)(-u+v) + (-u+v)^2
                          $$

                          Hence
                          $$
                          begin{align}
                          p^2 &= (x^2-3y^2)^2 + 3(2xy)^2\
                          &= (x^2-3y^2+2xy)^2 + (x^2-3y^2+2xy)(3y^2-x^2+2xy) + (3y^2-x^2+2xy)^2\
                          &= a^2+ab+b^2
                          end{align}
                          $$

                          Hence
                          $$
                          begin{align}
                          a &= x^2-3y^2+2xy = (x+3y)(x-y)\
                          b &= 3y^2-x^2+2xy = (3y-x)(y+x)
                          end{align}
                          $$

                          Since $y<x < 3y$, we get $0< a,b$. Next we check that
                          $$
                          begin{align}
                          p-a &= x^2+3y^2 - (x^2-3y^2+2xy) = 6y^2-2xy = 2y(3y-x) > 0\
                          p-b &= x^2+3y^2 - (3y^2-x^2+2xy) = 2x^2-2xy = 2x(x-y) > 0
                          end{align}
                          $$

                          Therefore $0< a,b < p$.



                          This completes the proof.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 14 at 14:02









                          Yong Hao NgYong Hao Ng

                          3,5691222




                          3,5691222






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036675%2fprove-there-exist-postive-integers-a-b-such-p2a2abb2%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              'app-layout' is not a known element: how to share Component with different Modules

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              WPF add header to Image with URL pettitions [duplicate]