Explanation on the steps of this total arc-length solution
$begingroup$
Can someone please explain to me what rules have been used to calculate ${bf{dot{x}}}$ and $|{bf{dot{x}}}|$ in the definition for total arc-length of this problem. I've tried to calculate this by expanding everything out, but get lost in the workings. Has the identity $cos^2t+sin^2t=1$ been used to eliminate $cos$ and $sin$?
Example: Calculate the total length of the following curve.
The logarithmic spiral, $x=e^{−ωt}$ $(Rcos2πt, Rsin2πt)$ with ω > 0 and $R > 0$ constants and I = [0,∞).
Solution:
The total length is
begin{align}
L &=int_0^∞
Re^{−ωt}(ω^2 + 4π^2)^{1/2} dt\
&=
frac{R}{ω} (ω^2 + 4π^2)^{1/2}.
end{align}
parametric arc-length
$endgroup$
add a comment |
$begingroup$
Can someone please explain to me what rules have been used to calculate ${bf{dot{x}}}$ and $|{bf{dot{x}}}|$ in the definition for total arc-length of this problem. I've tried to calculate this by expanding everything out, but get lost in the workings. Has the identity $cos^2t+sin^2t=1$ been used to eliminate $cos$ and $sin$?
Example: Calculate the total length of the following curve.
The logarithmic spiral, $x=e^{−ωt}$ $(Rcos2πt, Rsin2πt)$ with ω > 0 and $R > 0$ constants and I = [0,∞).
Solution:
The total length is
begin{align}
L &=int_0^∞
Re^{−ωt}(ω^2 + 4π^2)^{1/2} dt\
&=
frac{R}{ω} (ω^2 + 4π^2)^{1/2}.
end{align}
parametric arc-length
$endgroup$
add a comment |
$begingroup$
Can someone please explain to me what rules have been used to calculate ${bf{dot{x}}}$ and $|{bf{dot{x}}}|$ in the definition for total arc-length of this problem. I've tried to calculate this by expanding everything out, but get lost in the workings. Has the identity $cos^2t+sin^2t=1$ been used to eliminate $cos$ and $sin$?
Example: Calculate the total length of the following curve.
The logarithmic spiral, $x=e^{−ωt}$ $(Rcos2πt, Rsin2πt)$ with ω > 0 and $R > 0$ constants and I = [0,∞).
Solution:
The total length is
begin{align}
L &=int_0^∞
Re^{−ωt}(ω^2 + 4π^2)^{1/2} dt\
&=
frac{R}{ω} (ω^2 + 4π^2)^{1/2}.
end{align}
parametric arc-length
$endgroup$
Can someone please explain to me what rules have been used to calculate ${bf{dot{x}}}$ and $|{bf{dot{x}}}|$ in the definition for total arc-length of this problem. I've tried to calculate this by expanding everything out, but get lost in the workings. Has the identity $cos^2t+sin^2t=1$ been used to eliminate $cos$ and $sin$?
Example: Calculate the total length of the following curve.
The logarithmic spiral, $x=e^{−ωt}$ $(Rcos2πt, Rsin2πt)$ with ω > 0 and $R > 0$ constants and I = [0,∞).
Solution:
The total length is
begin{align}
L &=int_0^∞
Re^{−ωt}(ω^2 + 4π^2)^{1/2} dt\
&=
frac{R}{ω} (ω^2 + 4π^2)^{1/2}.
end{align}
parametric arc-length
parametric arc-length
edited Jan 11 at 1:49
asked Jan 11 at 1:43
user606466
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$L = int |frac {dmathbf x}{dt}| dt$
$frac {d}{dt} mathbf x = -omega e^{-omega t}(Rcos 2pi t,Rsin 2pi t) + e^{-omega t}(-2pi Rsin 2pi t,2pi Rcos 2pi t)$
The two terms are orthogonal to one another.
$|frac {dmathbf x}{dt}|^2 = |-omega R e^{-omega t}(cos 2pi t,sin 2pi t)|^2 + |2pi Re^{-omega t}(-sin 2pi t,cos 2pi t)|^2$
$|frac {dmathbf x}{dt}| =Re^{-omega t}sqrt{omega^2+(2pi)^2} $
$endgroup$
$begingroup$
Thank you. That cleared my confusion :)
$endgroup$
– user606466
Jan 11 at 2:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069400%2fexplanation-on-the-steps-of-this-total-arc-length-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$L = int |frac {dmathbf x}{dt}| dt$
$frac {d}{dt} mathbf x = -omega e^{-omega t}(Rcos 2pi t,Rsin 2pi t) + e^{-omega t}(-2pi Rsin 2pi t,2pi Rcos 2pi t)$
The two terms are orthogonal to one another.
$|frac {dmathbf x}{dt}|^2 = |-omega R e^{-omega t}(cos 2pi t,sin 2pi t)|^2 + |2pi Re^{-omega t}(-sin 2pi t,cos 2pi t)|^2$
$|frac {dmathbf x}{dt}| =Re^{-omega t}sqrt{omega^2+(2pi)^2} $
$endgroup$
$begingroup$
Thank you. That cleared my confusion :)
$endgroup$
– user606466
Jan 11 at 2:10
add a comment |
$begingroup$
$L = int |frac {dmathbf x}{dt}| dt$
$frac {d}{dt} mathbf x = -omega e^{-omega t}(Rcos 2pi t,Rsin 2pi t) + e^{-omega t}(-2pi Rsin 2pi t,2pi Rcos 2pi t)$
The two terms are orthogonal to one another.
$|frac {dmathbf x}{dt}|^2 = |-omega R e^{-omega t}(cos 2pi t,sin 2pi t)|^2 + |2pi Re^{-omega t}(-sin 2pi t,cos 2pi t)|^2$
$|frac {dmathbf x}{dt}| =Re^{-omega t}sqrt{omega^2+(2pi)^2} $
$endgroup$
$begingroup$
Thank you. That cleared my confusion :)
$endgroup$
– user606466
Jan 11 at 2:10
add a comment |
$begingroup$
$L = int |frac {dmathbf x}{dt}| dt$
$frac {d}{dt} mathbf x = -omega e^{-omega t}(Rcos 2pi t,Rsin 2pi t) + e^{-omega t}(-2pi Rsin 2pi t,2pi Rcos 2pi t)$
The two terms are orthogonal to one another.
$|frac {dmathbf x}{dt}|^2 = |-omega R e^{-omega t}(cos 2pi t,sin 2pi t)|^2 + |2pi Re^{-omega t}(-sin 2pi t,cos 2pi t)|^2$
$|frac {dmathbf x}{dt}| =Re^{-omega t}sqrt{omega^2+(2pi)^2} $
$endgroup$
$L = int |frac {dmathbf x}{dt}| dt$
$frac {d}{dt} mathbf x = -omega e^{-omega t}(Rcos 2pi t,Rsin 2pi t) + e^{-omega t}(-2pi Rsin 2pi t,2pi Rcos 2pi t)$
The two terms are orthogonal to one another.
$|frac {dmathbf x}{dt}|^2 = |-omega R e^{-omega t}(cos 2pi t,sin 2pi t)|^2 + |2pi Re^{-omega t}(-sin 2pi t,cos 2pi t)|^2$
$|frac {dmathbf x}{dt}| =Re^{-omega t}sqrt{omega^2+(2pi)^2} $
answered Jan 11 at 1:56
Doug MDoug M
44.8k31854
44.8k31854
$begingroup$
Thank you. That cleared my confusion :)
$endgroup$
– user606466
Jan 11 at 2:10
add a comment |
$begingroup$
Thank you. That cleared my confusion :)
$endgroup$
– user606466
Jan 11 at 2:10
$begingroup$
Thank you. That cleared my confusion :)
$endgroup$
– user606466
Jan 11 at 2:10
$begingroup$
Thank you. That cleared my confusion :)
$endgroup$
– user606466
Jan 11 at 2:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069400%2fexplanation-on-the-steps-of-this-total-arc-length-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown