Bounds of defining operations for equivalence classes












0














When operations for number systems are defined in terms of representatives of equivalence classes, can those operations meet the criteria for being well defined if the definition includes specific values of the number system from which a system is constructed?



As an example, if I want to define addition for a number system constructed from nonnegative reals:
(a,b) + (c,d) = [((a+c)/2), ((b+d)/3)]


Is it permissible to include digits that already belong to the reals? The operation of division? What if I wanted to use a signum function?



I recognize that there may be prohibitions against such things when it comes to operation definitions; if they are off-limits, I would appreciate direction to resources or explanations that indicate the basis for such prohibitions.










share|cite|improve this question





























    0














    When operations for number systems are defined in terms of representatives of equivalence classes, can those operations meet the criteria for being well defined if the definition includes specific values of the number system from which a system is constructed?



    As an example, if I want to define addition for a number system constructed from nonnegative reals:
    (a,b) + (c,d) = [((a+c)/2), ((b+d)/3)]


    Is it permissible to include digits that already belong to the reals? The operation of division? What if I wanted to use a signum function?



    I recognize that there may be prohibitions against such things when it comes to operation definitions; if they are off-limits, I would appreciate direction to resources or explanations that indicate the basis for such prohibitions.










    share|cite|improve this question



























      0












      0








      0







      When operations for number systems are defined in terms of representatives of equivalence classes, can those operations meet the criteria for being well defined if the definition includes specific values of the number system from which a system is constructed?



      As an example, if I want to define addition for a number system constructed from nonnegative reals:
      (a,b) + (c,d) = [((a+c)/2), ((b+d)/3)]


      Is it permissible to include digits that already belong to the reals? The operation of division? What if I wanted to use a signum function?



      I recognize that there may be prohibitions against such things when it comes to operation definitions; if they are off-limits, I would appreciate direction to resources or explanations that indicate the basis for such prohibitions.










      share|cite|improve this question















      When operations for number systems are defined in terms of representatives of equivalence classes, can those operations meet the criteria for being well defined if the definition includes specific values of the number system from which a system is constructed?



      As an example, if I want to define addition for a number system constructed from nonnegative reals:
      (a,b) + (c,d) = [((a+c)/2), ((b+d)/3)]


      Is it permissible to include digits that already belong to the reals? The operation of division? What if I wanted to use a signum function?



      I recognize that there may be prohibitions against such things when it comes to operation definitions; if they are off-limits, I would appreciate direction to resources or explanations that indicate the basis for such prohibitions.







      elementary-set-theory definition binary-operations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 24 '18 at 18:32

























      asked Nov 20 '18 at 15:29









      bblohowiak

      918




      918






















          1 Answer
          1






          active

          oldest

          votes


















          1














          I am not sure I understand your question, but I will try to answer what I think you are asking.



          The operation you have defined that maps two ordered pairs of real numbers (not necessarily positive) to another pair of real numbers is well defined. That fact that it mentions $2$ and $3$ is not a problem.



          I see nothing in your example that addresses representatives of equivalence classes.



          I hope you chose that just as an example. It's probably not particularly nice, or useful.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006458%2fbounds-of-defining-operations-for-equivalence-classes%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            I am not sure I understand your question, but I will try to answer what I think you are asking.



            The operation you have defined that maps two ordered pairs of real numbers (not necessarily positive) to another pair of real numbers is well defined. That fact that it mentions $2$ and $3$ is not a problem.



            I see nothing in your example that addresses representatives of equivalence classes.



            I hope you chose that just as an example. It's probably not particularly nice, or useful.






            share|cite|improve this answer


























              1














              I am not sure I understand your question, but I will try to answer what I think you are asking.



              The operation you have defined that maps two ordered pairs of real numbers (not necessarily positive) to another pair of real numbers is well defined. That fact that it mentions $2$ and $3$ is not a problem.



              I see nothing in your example that addresses representatives of equivalence classes.



              I hope you chose that just as an example. It's probably not particularly nice, or useful.






              share|cite|improve this answer
























                1












                1








                1






                I am not sure I understand your question, but I will try to answer what I think you are asking.



                The operation you have defined that maps two ordered pairs of real numbers (not necessarily positive) to another pair of real numbers is well defined. That fact that it mentions $2$ and $3$ is not a problem.



                I see nothing in your example that addresses representatives of equivalence classes.



                I hope you chose that just as an example. It's probably not particularly nice, or useful.






                share|cite|improve this answer












                I am not sure I understand your question, but I will try to answer what I think you are asking.



                The operation you have defined that maps two ordered pairs of real numbers (not necessarily positive) to another pair of real numbers is well defined. That fact that it mentions $2$ and $3$ is not a problem.



                I see nothing in your example that addresses representatives of equivalence classes.



                I hope you chose that just as an example. It's probably not particularly nice, or useful.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 24 '18 at 18:44









                Ethan Bolker

                41.6k547110




                41.6k547110






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006458%2fbounds-of-defining-operations-for-equivalence-classes%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                    Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                    A Topological Invariant for $pi_3(U(n))$