inequality with differential norm












0












$begingroup$


I'm trying to prove that $sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} = sup_{x in B} |D_f(x)|$



Where $f:B to mathbb R^n$ is differentiable and $B subset mathbb R^n$.



I have difficulties.



this is what I tried -



Let $x_0 in B$, $epsilon > 0$, $t >0$ and $|v| = 1$.



$f(x_0+tv) = f(x_0)+D_f(x_0)tv + frac{E(tv)}{t}$, so $D_f(x_0)v = frac{f(x_0+tv)-f(x_0)}{t}-frac{E(tv)}{t}$



Hence $|D_f(x_0)| leq frac{|f(x_0+tv)-f(x_0)|}{t}+frac{|E(tv)|}{t} leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} + frac{|E(tv)|}{t}$



If $t$ is small enough, then $sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} + frac{|E(tv)|}{t} leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} +epsilon$



But this is true for all $epsilon$, so overall $|D_f(x_0)| leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|}$



That's as far as I got, not sure how to continue.










share|cite|improve this question











$endgroup$












  • $begingroup$
    This might help.
    $endgroup$
    – user635162
    Jan 17 at 23:59
















0












$begingroup$


I'm trying to prove that $sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} = sup_{x in B} |D_f(x)|$



Where $f:B to mathbb R^n$ is differentiable and $B subset mathbb R^n$.



I have difficulties.



this is what I tried -



Let $x_0 in B$, $epsilon > 0$, $t >0$ and $|v| = 1$.



$f(x_0+tv) = f(x_0)+D_f(x_0)tv + frac{E(tv)}{t}$, so $D_f(x_0)v = frac{f(x_0+tv)-f(x_0)}{t}-frac{E(tv)}{t}$



Hence $|D_f(x_0)| leq frac{|f(x_0+tv)-f(x_0)|}{t}+frac{|E(tv)|}{t} leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} + frac{|E(tv)|}{t}$



If $t$ is small enough, then $sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} + frac{|E(tv)|}{t} leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} +epsilon$



But this is true for all $epsilon$, so overall $|D_f(x_0)| leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|}$



That's as far as I got, not sure how to continue.










share|cite|improve this question











$endgroup$












  • $begingroup$
    This might help.
    $endgroup$
    – user635162
    Jan 17 at 23:59














0












0








0





$begingroup$


I'm trying to prove that $sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} = sup_{x in B} |D_f(x)|$



Where $f:B to mathbb R^n$ is differentiable and $B subset mathbb R^n$.



I have difficulties.



this is what I tried -



Let $x_0 in B$, $epsilon > 0$, $t >0$ and $|v| = 1$.



$f(x_0+tv) = f(x_0)+D_f(x_0)tv + frac{E(tv)}{t}$, so $D_f(x_0)v = frac{f(x_0+tv)-f(x_0)}{t}-frac{E(tv)}{t}$



Hence $|D_f(x_0)| leq frac{|f(x_0+tv)-f(x_0)|}{t}+frac{|E(tv)|}{t} leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} + frac{|E(tv)|}{t}$



If $t$ is small enough, then $sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} + frac{|E(tv)|}{t} leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} +epsilon$



But this is true for all $epsilon$, so overall $|D_f(x_0)| leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|}$



That's as far as I got, not sure how to continue.










share|cite|improve this question











$endgroup$




I'm trying to prove that $sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} = sup_{x in B} |D_f(x)|$



Where $f:B to mathbb R^n$ is differentiable and $B subset mathbb R^n$.



I have difficulties.



this is what I tried -



Let $x_0 in B$, $epsilon > 0$, $t >0$ and $|v| = 1$.



$f(x_0+tv) = f(x_0)+D_f(x_0)tv + frac{E(tv)}{t}$, so $D_f(x_0)v = frac{f(x_0+tv)-f(x_0)}{t}-frac{E(tv)}{t}$



Hence $|D_f(x_0)| leq frac{|f(x_0+tv)-f(x_0)|}{t}+frac{|E(tv)|}{t} leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} + frac{|E(tv)|}{t}$



If $t$ is small enough, then $sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} + frac{|E(tv)|}{t} leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|} +epsilon$



But this is true for all $epsilon$, so overall $|D_f(x_0)| leq sup_{x,y in B}frac{|f(x)-f(y)|}{|x-y|}$



That's as far as I got, not sure how to continue.







calculus supremum-and-infimum






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 21:08







Rick Joker

















asked Jan 17 at 20:54









Rick JokerRick Joker

399111




399111












  • $begingroup$
    This might help.
    $endgroup$
    – user635162
    Jan 17 at 23:59


















  • $begingroup$
    This might help.
    $endgroup$
    – user635162
    Jan 17 at 23:59
















$begingroup$
This might help.
$endgroup$
– user635162
Jan 17 at 23:59




$begingroup$
This might help.
$endgroup$
– user635162
Jan 17 at 23:59










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077498%2finequality-with-differential-norm%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077498%2finequality-with-differential-norm%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]