Evaluation of the commutator $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$.












0












$begingroup$


I am trying to evaluate a commutator of the form $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$. Bt acting it on a function $f(vec{r})$, I get that the commuator is equal to zero. Can you help?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Any function $f(vec{r})$.
    $endgroup$
    – mithusengupta123
    Jan 17 at 20:49










  • $begingroup$
    Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
    $endgroup$
    – Luke
    Jan 17 at 21:01
















0












$begingroup$


I am trying to evaluate a commutator of the form $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$. Bt acting it on a function $f(vec{r})$, I get that the commuator is equal to zero. Can you help?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Any function $f(vec{r})$.
    $endgroup$
    – mithusengupta123
    Jan 17 at 20:49










  • $begingroup$
    Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
    $endgroup$
    – Luke
    Jan 17 at 21:01














0












0








0





$begingroup$


I am trying to evaluate a commutator of the form $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$. Bt acting it on a function $f(vec{r})$, I get that the commuator is equal to zero. Can you help?










share|cite|improve this question











$endgroup$




I am trying to evaluate a commutator of the form $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$. Bt acting it on a function $f(vec{r})$, I get that the commuator is equal to zero. Can you help?







group-theory quantum-mechanics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 20:49







mithusengupta123

















asked Jan 17 at 20:41









mithusengupta123mithusengupta123

1139




1139












  • $begingroup$
    Any function $f(vec{r})$.
    $endgroup$
    – mithusengupta123
    Jan 17 at 20:49










  • $begingroup$
    Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
    $endgroup$
    – Luke
    Jan 17 at 21:01


















  • $begingroup$
    Any function $f(vec{r})$.
    $endgroup$
    – mithusengupta123
    Jan 17 at 20:49










  • $begingroup$
    Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
    $endgroup$
    – Luke
    Jan 17 at 21:01
















$begingroup$
Any function $f(vec{r})$.
$endgroup$
– mithusengupta123
Jan 17 at 20:49




$begingroup$
Any function $f(vec{r})$.
$endgroup$
– mithusengupta123
Jan 17 at 20:49












$begingroup$
Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
$endgroup$
– Luke
Jan 17 at 21:01




$begingroup$
Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
$endgroup$
– Luke
Jan 17 at 21:01










2 Answers
2






active

oldest

votes


















1












$begingroup$

Calculate first this version



begin{eqnarray}
require{cancel}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
&=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
end{eqnarray}



So the problem reduces to



begin{eqnarray}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
&=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
&=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
&=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
end{eqnarray}



Now replace $kto j$ and sum over $j$



begin{eqnarray}
left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
&=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
&=& 2frac{x_i}{r^3}
end{eqnarray}






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    Consider any mathematical Expression $A$ and apply the commutator on it. Then



    $[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$



    Note that in this calculation, the first term on the right Hand side is a composition of two operations:



    First multiplication of $f$ with A because the $f$ is directly left next to the $A$



    then applying the differential Operator,since it is left next to all other expressions.



    Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is



    $[frac{partial}{partial x_j},f]A = RA$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077490%2fevaluation-of-the-commutator-frac-partial-partial-x-j-fracx-ix-j-r2-de%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Calculate first this version



      begin{eqnarray}
      require{cancel}
      left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
      frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
      &=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
      end{eqnarray}



      So the problem reduces to



      begin{eqnarray}
      left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
      &=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
      &=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
      &=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
      end{eqnarray}



      Now replace $kto j$ and sum over $j$



      begin{eqnarray}
      left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
      &=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
      &=& 2frac{x_i}{r^3}
      end{eqnarray}






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Calculate first this version



        begin{eqnarray}
        require{cancel}
        left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
        frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
        &=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
        end{eqnarray}



        So the problem reduces to



        begin{eqnarray}
        left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
        &=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
        &=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
        &=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
        end{eqnarray}



        Now replace $kto j$ and sum over $j$



        begin{eqnarray}
        left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
        &=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
        &=& 2frac{x_i}{r^3}
        end{eqnarray}






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Calculate first this version



          begin{eqnarray}
          require{cancel}
          left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
          frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
          &=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
          end{eqnarray}



          So the problem reduces to



          begin{eqnarray}
          left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
          &=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
          &=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
          &=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
          end{eqnarray}



          Now replace $kto j$ and sum over $j$



          begin{eqnarray}
          left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
          &=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
          &=& 2frac{x_i}{r^3}
          end{eqnarray}






          share|cite|improve this answer









          $endgroup$



          Calculate first this version



          begin{eqnarray}
          require{cancel}
          left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
          frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
          &=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
          end{eqnarray}



          So the problem reduces to



          begin{eqnarray}
          left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
          &=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
          &=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
          &=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
          end{eqnarray}



          Now replace $kto j$ and sum over $j$



          begin{eqnarray}
          left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
          &=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
          &=& 2frac{x_i}{r^3}
          end{eqnarray}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 17 at 21:25









          caveraccaverac

          14.6k31130




          14.6k31130























              0












              $begingroup$

              Consider any mathematical Expression $A$ and apply the commutator on it. Then



              $[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$



              Note that in this calculation, the first term on the right Hand side is a composition of two operations:



              First multiplication of $f$ with A because the $f$ is directly left next to the $A$



              then applying the differential Operator,since it is left next to all other expressions.



              Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is



              $[frac{partial}{partial x_j},f]A = RA$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Consider any mathematical Expression $A$ and apply the commutator on it. Then



                $[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$



                Note that in this calculation, the first term on the right Hand side is a composition of two operations:



                First multiplication of $f$ with A because the $f$ is directly left next to the $A$



                then applying the differential Operator,since it is left next to all other expressions.



                Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is



                $[frac{partial}{partial x_j},f]A = RA$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Consider any mathematical Expression $A$ and apply the commutator on it. Then



                  $[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$



                  Note that in this calculation, the first term on the right Hand side is a composition of two operations:



                  First multiplication of $f$ with A because the $f$ is directly left next to the $A$



                  then applying the differential Operator,since it is left next to all other expressions.



                  Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is



                  $[frac{partial}{partial x_j},f]A = RA$






                  share|cite|improve this answer









                  $endgroup$



                  Consider any mathematical Expression $A$ and apply the commutator on it. Then



                  $[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$



                  Note that in this calculation, the first term on the right Hand side is a composition of two operations:



                  First multiplication of $f$ with A because the $f$ is directly left next to the $A$



                  then applying the differential Operator,since it is left next to all other expressions.



                  Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is



                  $[frac{partial}{partial x_j},f]A = RA$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 17 at 21:05









                  kryomaximkryomaxim

                  2,3571825




                  2,3571825






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077490%2fevaluation-of-the-commutator-frac-partial-partial-x-j-fracx-ix-j-r2-de%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      'app-layout' is not a known element: how to share Component with different Modules

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      WPF add header to Image with URL pettitions [duplicate]