Evaluation of the commutator $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$.
$begingroup$
I am trying to evaluate a commutator of the form $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$. Bt acting it on a function $f(vec{r})$, I get that the commuator is equal to zero. Can you help?
group-theory quantum-mechanics
$endgroup$
add a comment |
$begingroup$
I am trying to evaluate a commutator of the form $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$. Bt acting it on a function $f(vec{r})$, I get that the commuator is equal to zero. Can you help?
group-theory quantum-mechanics
$endgroup$
$begingroup$
Any function $f(vec{r})$.
$endgroup$
– mithusengupta123
Jan 17 at 20:49
$begingroup$
Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
$endgroup$
– Luke
Jan 17 at 21:01
add a comment |
$begingroup$
I am trying to evaluate a commutator of the form $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$. Bt acting it on a function $f(vec{r})$, I get that the commuator is equal to zero. Can you help?
group-theory quantum-mechanics
$endgroup$
I am trying to evaluate a commutator of the form $[frac{partial}{partial x_j},frac{x_ix_j-r^2delta_{ij}}{r^3}]=-2x_i/r^3$. Bt acting it on a function $f(vec{r})$, I get that the commuator is equal to zero. Can you help?
group-theory quantum-mechanics
group-theory quantum-mechanics
edited Jan 17 at 20:49
mithusengupta123
asked Jan 17 at 20:41
mithusengupta123mithusengupta123
1139
1139
$begingroup$
Any function $f(vec{r})$.
$endgroup$
– mithusengupta123
Jan 17 at 20:49
$begingroup$
Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
$endgroup$
– Luke
Jan 17 at 21:01
add a comment |
$begingroup$
Any function $f(vec{r})$.
$endgroup$
– mithusengupta123
Jan 17 at 20:49
$begingroup$
Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
$endgroup$
– Luke
Jan 17 at 21:01
$begingroup$
Any function $f(vec{r})$.
$endgroup$
– mithusengupta123
Jan 17 at 20:49
$begingroup$
Any function $f(vec{r})$.
$endgroup$
– mithusengupta123
Jan 17 at 20:49
$begingroup$
Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
$endgroup$
– Luke
Jan 17 at 21:01
$begingroup$
Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
$endgroup$
– Luke
Jan 17 at 21:01
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Calculate first this version
begin{eqnarray}
require{cancel}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
&=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
end{eqnarray}
So the problem reduces to
begin{eqnarray}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
&=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
&=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
&=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
end{eqnarray}
Now replace $kto j$ and sum over $j$
begin{eqnarray}
left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
&=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
&=& 2frac{x_i}{r^3}
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
Consider any mathematical Expression $A$ and apply the commutator on it. Then
$[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$
Note that in this calculation, the first term on the right Hand side is a composition of two operations:
First multiplication of $f$ with A because the $f$ is directly left next to the $A$
then applying the differential Operator,since it is left next to all other expressions.
Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is
$[frac{partial}{partial x_j},f]A = RA$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077490%2fevaluation-of-the-commutator-frac-partial-partial-x-j-fracx-ix-j-r2-de%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Calculate first this version
begin{eqnarray}
require{cancel}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
&=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
end{eqnarray}
So the problem reduces to
begin{eqnarray}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
&=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
&=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
&=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
end{eqnarray}
Now replace $kto j$ and sum over $j$
begin{eqnarray}
left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
&=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
&=& 2frac{x_i}{r^3}
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
Calculate first this version
begin{eqnarray}
require{cancel}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
&=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
end{eqnarray}
So the problem reduces to
begin{eqnarray}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
&=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
&=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
&=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
end{eqnarray}
Now replace $kto j$ and sum over $j$
begin{eqnarray}
left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
&=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
&=& 2frac{x_i}{r^3}
end{eqnarray}
$endgroup$
add a comment |
$begingroup$
Calculate first this version
begin{eqnarray}
require{cancel}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
&=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
end{eqnarray}
So the problem reduces to
begin{eqnarray}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
&=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
&=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
&=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
end{eqnarray}
Now replace $kto j$ and sum over $j$
begin{eqnarray}
left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
&=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
&=& 2frac{x_i}{r^3}
end{eqnarray}
$endgroup$
Calculate first this version
begin{eqnarray}
require{cancel}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right]f &=&
frac{partial}{partial x_k}left(frac{x_i x_j - r^2delta_{ij}}{r^3}f right) - frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k} \
&=& left(frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3}right)f + cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}} - cancel{frac{x_i x_j - r^2delta_{ij}}{r^3}frac{partial f}{partial x_k}}
end{eqnarray}
So the problem reduces to
begin{eqnarray}
left[frac{partial}{partial x_k}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=&frac{partial}{partial x_k}frac{x_i x_j - r^2delta_{ij}}{r^3} \
&=& frac{partial}{partial x_k} frac{x_i x_j}{r^3} - delta_{ij}frac{partial}{partial x_k}frac{1}{r} \
&=& left(frac{delta_{ik}x_j}{r^3} + frac{x_idelta_{jk}}{r^3}- 3frac{x_ix_j x_k}{r^5} right) + delta_{ij}frac{x_k}{r^3} \
&=& frac{1}{r^3}left(delta_{ik} x_j + x_idelta_{jk} + delta_{ij} x_kright) - 3 frac{x_i x_j x_k}{r^5} tag{1}
end{eqnarray}
Now replace $kto j$ and sum over $j$
begin{eqnarray}
left[frac{partial}{partial x_j}, frac{x_i x_j - r^2delta_{ij}}{r^3}right] &=& frac{1}{r^3} left(delta_{ij} x_j + x_idelta_{jj} + delta_{ij} x_jright) - 3 frac{x_i x_j x_j}{r^5} \
&=& frac{1}{r^3} left(2x_i + 3x_iright) - 3 frac{x_i r^2}{r^5} \
&=& 2frac{x_i}{r^3}
end{eqnarray}
answered Jan 17 at 21:25
caveraccaverac
14.6k31130
14.6k31130
add a comment |
add a comment |
$begingroup$
Consider any mathematical Expression $A$ and apply the commutator on it. Then
$[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$
Note that in this calculation, the first term on the right Hand side is a composition of two operations:
First multiplication of $f$ with A because the $f$ is directly left next to the $A$
then applying the differential Operator,since it is left next to all other expressions.
Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is
$[frac{partial}{partial x_j},f]A = RA$
$endgroup$
add a comment |
$begingroup$
Consider any mathematical Expression $A$ and apply the commutator on it. Then
$[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$
Note that in this calculation, the first term on the right Hand side is a composition of two operations:
First multiplication of $f$ with A because the $f$ is directly left next to the $A$
then applying the differential Operator,since it is left next to all other expressions.
Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is
$[frac{partial}{partial x_j},f]A = RA$
$endgroup$
add a comment |
$begingroup$
Consider any mathematical Expression $A$ and apply the commutator on it. Then
$[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$
Note that in this calculation, the first term on the right Hand side is a composition of two operations:
First multiplication of $f$ with A because the $f$ is directly left next to the $A$
then applying the differential Operator,since it is left next to all other expressions.
Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is
$[frac{partial}{partial x_j},f]A = RA$
$endgroup$
Consider any mathematical Expression $A$ and apply the commutator on it. Then
$[frac{partial}{partial x_j},f]A = frac{partial}{partial x_j}(fA)-f frac{partial}{partial x_j}A$
Note that in this calculation, the first term on the right Hand side is a composition of two operations:
First multiplication of $f$ with A because the $f$ is directly left next to the $A$
then applying the differential Operator,since it is left next to all other expressions.
Finally use product rule and lookwhich factor is in front of $A$. So the result of the commutator $R = [frac{partial}{partial x_j},f]$ is
$[frac{partial}{partial x_j},f]A = RA$
answered Jan 17 at 21:05
kryomaximkryomaxim
2,3571825
2,3571825
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077490%2fevaluation-of-the-commutator-frac-partial-partial-x-j-fracx-ix-j-r2-de%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Any function $f(vec{r})$.
$endgroup$
– mithusengupta123
Jan 17 at 20:49
$begingroup$
Can you present your calculations? It's not easy to provide constructive feedback if we don't know your approach.
$endgroup$
– Luke
Jan 17 at 21:01