Calculating $int frac{dx}{(x^2+1)^3}$ integral












2












$begingroup$


Would anyone help me calculate the following integral? $int frac{dx}{(x^2+1)^3}$



During our lecutre we've done very similiar one, $int frac{dx}{(x^2+1)^2}$ like that:



$int frac{dx}{(x^2+1)^2} = int frac{x^2+1-x^2}{(x^2+1)^2}dx = int frac{1}{x^2+1}dx - int frac{x^2}{(x^2+1)^2}dx = $



$= Biggrrvert begin{equation}
begin{split}
& u = x quad v' =frac{x}{(x^2+1)^2} =frac{1(x^2+1)'}{2(x^2+1)^2}\
& u' = 1 quad v = -frac{1}{2} frac{1}{x^2+1}
end{split}
end{equation} Biggrrvert$



$= arctan x - (-xfrac{1}{2}frac{1}{x^2+1} + frac{1}{2} int frac{dx}{x^2+1})$



$= arctan x + frac{x}{2(x^2+1)} - frac{1}{2}arctan x + C = frac{1}{2}arctan x + frac{x}{2(x^2+1)} + C$



Thank you.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Would anyone help me calculate the following integral? $int frac{dx}{(x^2+1)^3}$



    During our lecutre we've done very similiar one, $int frac{dx}{(x^2+1)^2}$ like that:



    $int frac{dx}{(x^2+1)^2} = int frac{x^2+1-x^2}{(x^2+1)^2}dx = int frac{1}{x^2+1}dx - int frac{x^2}{(x^2+1)^2}dx = $



    $= Biggrrvert begin{equation}
    begin{split}
    & u = x quad v' =frac{x}{(x^2+1)^2} =frac{1(x^2+1)'}{2(x^2+1)^2}\
    & u' = 1 quad v = -frac{1}{2} frac{1}{x^2+1}
    end{split}
    end{equation} Biggrrvert$



    $= arctan x - (-xfrac{1}{2}frac{1}{x^2+1} + frac{1}{2} int frac{dx}{x^2+1})$



    $= arctan x + frac{x}{2(x^2+1)} - frac{1}{2}arctan x + C = frac{1}{2}arctan x + frac{x}{2(x^2+1)} + C$



    Thank you.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Would anyone help me calculate the following integral? $int frac{dx}{(x^2+1)^3}$



      During our lecutre we've done very similiar one, $int frac{dx}{(x^2+1)^2}$ like that:



      $int frac{dx}{(x^2+1)^2} = int frac{x^2+1-x^2}{(x^2+1)^2}dx = int frac{1}{x^2+1}dx - int frac{x^2}{(x^2+1)^2}dx = $



      $= Biggrrvert begin{equation}
      begin{split}
      & u = x quad v' =frac{x}{(x^2+1)^2} =frac{1(x^2+1)'}{2(x^2+1)^2}\
      & u' = 1 quad v = -frac{1}{2} frac{1}{x^2+1}
      end{split}
      end{equation} Biggrrvert$



      $= arctan x - (-xfrac{1}{2}frac{1}{x^2+1} + frac{1}{2} int frac{dx}{x^2+1})$



      $= arctan x + frac{x}{2(x^2+1)} - frac{1}{2}arctan x + C = frac{1}{2}arctan x + frac{x}{2(x^2+1)} + C$



      Thank you.










      share|cite|improve this question









      $endgroup$




      Would anyone help me calculate the following integral? $int frac{dx}{(x^2+1)^3}$



      During our lecutre we've done very similiar one, $int frac{dx}{(x^2+1)^2}$ like that:



      $int frac{dx}{(x^2+1)^2} = int frac{x^2+1-x^2}{(x^2+1)^2}dx = int frac{1}{x^2+1}dx - int frac{x^2}{(x^2+1)^2}dx = $



      $= Biggrrvert begin{equation}
      begin{split}
      & u = x quad v' =frac{x}{(x^2+1)^2} =frac{1(x^2+1)'}{2(x^2+1)^2}\
      & u' = 1 quad v = -frac{1}{2} frac{1}{x^2+1}
      end{split}
      end{equation} Biggrrvert$



      $= arctan x - (-xfrac{1}{2}frac{1}{x^2+1} + frac{1}{2} int frac{dx}{x^2+1})$



      $= arctan x + frac{x}{2(x^2+1)} - frac{1}{2}arctan x + C = frac{1}{2}arctan x + frac{x}{2(x^2+1)} + C$



      Thank you.







      real-analysis calculus integration






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 9 at 16:18









      wenoweno

      30511




      30511






















          4 Answers
          4






          active

          oldest

          votes


















          3












          $begingroup$

          We will find a general reduction formula for the integral
          $$I_n=intfrac{dx}{(ax^2+b)^n}$$
          Integration by parts with
          $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
          Yields
          $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
          $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
          $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
          $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
          $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
          $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
          replacing $n+1$ with $n$,
          $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
          Now for the base case $I_1$:
          $$I_1=intfrac{dx}{ax^2+b}$$
          Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
          So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
          $$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
          $$I_1=frac1{sqrt{ab}}int du$$
          $$I_1=frac{u}{sqrt{ab}}$$
          $$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
          Plug in your specific $a,b$ and $n$, and you're good to go.





          Edit: Whatever I'll just give you the answer.



          Plugging in $a=1, b=1, n=3$ we have
          $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
          Note that
          $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
          $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
          So
          $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
            $$
            begin{split}
            f_3(x)
            &= int frac{dx}{left(x^2+1right)^3}\
            &= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
            &= f_2(x) - text{proceed by parts as before}
            end{split}
            $$






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                I used:



                $$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
                which leads to:



                $$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
                Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
                Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$



                Which is resolved simply.






                share|cite|improve this answer









                $endgroup$













                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067632%2fcalculating-int-fracdxx213-integral%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  3












                  $begingroup$

                  We will find a general reduction formula for the integral
                  $$I_n=intfrac{dx}{(ax^2+b)^n}$$
                  Integration by parts with
                  $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
                  Yields
                  $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
                  $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
                  $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
                  $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
                  $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
                  $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
                  replacing $n+1$ with $n$,
                  $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
                  Now for the base case $I_1$:
                  $$I_1=intfrac{dx}{ax^2+b}$$
                  Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
                  So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
                  $$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
                  $$I_1=frac1{sqrt{ab}}int du$$
                  $$I_1=frac{u}{sqrt{ab}}$$
                  $$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
                  Plug in your specific $a,b$ and $n$, and you're good to go.





                  Edit: Whatever I'll just give you the answer.



                  Plugging in $a=1, b=1, n=3$ we have
                  $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
                  Note that
                  $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
                  $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
                  So
                  $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$






                  share|cite|improve this answer











                  $endgroup$


















                    3












                    $begingroup$

                    We will find a general reduction formula for the integral
                    $$I_n=intfrac{dx}{(ax^2+b)^n}$$
                    Integration by parts with
                    $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
                    Yields
                    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
                    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
                    $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
                    $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
                    $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
                    $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
                    replacing $n+1$ with $n$,
                    $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
                    Now for the base case $I_1$:
                    $$I_1=intfrac{dx}{ax^2+b}$$
                    Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
                    So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
                    $$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
                    $$I_1=frac1{sqrt{ab}}int du$$
                    $$I_1=frac{u}{sqrt{ab}}$$
                    $$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
                    Plug in your specific $a,b$ and $n$, and you're good to go.





                    Edit: Whatever I'll just give you the answer.



                    Plugging in $a=1, b=1, n=3$ we have
                    $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
                    Note that
                    $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
                    $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
                    So
                    $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$






                    share|cite|improve this answer











                    $endgroup$
















                      3












                      3








                      3





                      $begingroup$

                      We will find a general reduction formula for the integral
                      $$I_n=intfrac{dx}{(ax^2+b)^n}$$
                      Integration by parts with
                      $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
                      Yields
                      $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
                      $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
                      $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
                      $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
                      $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
                      $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
                      replacing $n+1$ with $n$,
                      $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
                      Now for the base case $I_1$:
                      $$I_1=intfrac{dx}{ax^2+b}$$
                      Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
                      So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
                      $$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
                      $$I_1=frac1{sqrt{ab}}int du$$
                      $$I_1=frac{u}{sqrt{ab}}$$
                      $$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
                      Plug in your specific $a,b$ and $n$, and you're good to go.





                      Edit: Whatever I'll just give you the answer.



                      Plugging in $a=1, b=1, n=3$ we have
                      $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
                      Note that
                      $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
                      $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
                      So
                      $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$






                      share|cite|improve this answer











                      $endgroup$



                      We will find a general reduction formula for the integral
                      $$I_n=intfrac{dx}{(ax^2+b)^n}$$
                      Integration by parts with
                      $$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
                      Yields
                      $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
                      $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
                      $$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
                      $$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
                      $$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
                      $$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
                      replacing $n+1$ with $n$,
                      $$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
                      Now for the base case $I_1$:
                      $$I_1=intfrac{dx}{ax^2+b}$$
                      Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
                      So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
                      $$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
                      $$I_1=frac1{sqrt{ab}}int du$$
                      $$I_1=frac{u}{sqrt{ab}}$$
                      $$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
                      Plug in your specific $a,b$ and $n$, and you're good to go.





                      Edit: Whatever I'll just give you the answer.



                      Plugging in $a=1, b=1, n=3$ we have
                      $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
                      Note that
                      $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
                      $$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
                      So
                      $$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 9 at 23:27

























                      answered Jan 9 at 16:58









                      clathratusclathratus

                      4,174336




                      4,174336























                          2












                          $begingroup$

                          So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
                          $$
                          begin{split}
                          f_3(x)
                          &= int frac{dx}{left(x^2+1right)^3}\
                          &= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
                          &= f_2(x) - text{proceed by parts as before}
                          end{split}
                          $$






                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
                            $$
                            begin{split}
                            f_3(x)
                            &= int frac{dx}{left(x^2+1right)^3}\
                            &= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
                            &= f_2(x) - text{proceed by parts as before}
                            end{split}
                            $$






                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
                              $$
                              begin{split}
                              f_3(x)
                              &= int frac{dx}{left(x^2+1right)^3}\
                              &= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
                              &= f_2(x) - text{proceed by parts as before}
                              end{split}
                              $$






                              share|cite|improve this answer









                              $endgroup$



                              So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
                              $$
                              begin{split}
                              f_3(x)
                              &= int frac{dx}{left(x^2+1right)^3}\
                              &= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
                              &= f_2(x) - text{proceed by parts as before}
                              end{split}
                              $$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 9 at 16:24









                              gt6989bgt6989b

                              33.9k22455




                              33.9k22455























                                  1












                                  $begingroup$

                                  Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 9 at 16:23









                                      aledenaleden

                                      2,057511




                                      2,057511























                                          0












                                          $begingroup$

                                          I used:



                                          $$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
                                          which leads to:



                                          $$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
                                          Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
                                          Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$



                                          Which is resolved simply.






                                          share|cite|improve this answer









                                          $endgroup$


















                                            0












                                            $begingroup$

                                            I used:



                                            $$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
                                            which leads to:



                                            $$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
                                            Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
                                            Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$



                                            Which is resolved simply.






                                            share|cite|improve this answer









                                            $endgroup$
















                                              0












                                              0








                                              0





                                              $begingroup$

                                              I used:



                                              $$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
                                              which leads to:



                                              $$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
                                              Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
                                              Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$



                                              Which is resolved simply.






                                              share|cite|improve this answer









                                              $endgroup$



                                              I used:



                                              $$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
                                              which leads to:



                                              $$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
                                              Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
                                              Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$



                                              Which is resolved simply.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered Jan 9 at 16:34









                                              Rhys HughesRhys Hughes

                                              5,8531529




                                              5,8531529






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067632%2fcalculating-int-fracdxx213-integral%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  'app-layout' is not a known element: how to share Component with different Modules

                                                  android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                                                  WPF add header to Image with URL pettitions [duplicate]