Calculating $int frac{dx}{(x^2+1)^3}$ integral
$begingroup$
Would anyone help me calculate the following integral? $int frac{dx}{(x^2+1)^3}$
During our lecutre we've done very similiar one, $int frac{dx}{(x^2+1)^2}$ like that:
$int frac{dx}{(x^2+1)^2} = int frac{x^2+1-x^2}{(x^2+1)^2}dx = int frac{1}{x^2+1}dx - int frac{x^2}{(x^2+1)^2}dx = $
$= Biggrrvert begin{equation}
begin{split}
& u = x quad v' =frac{x}{(x^2+1)^2} =frac{1(x^2+1)'}{2(x^2+1)^2}\
& u' = 1 quad v = -frac{1}{2} frac{1}{x^2+1}
end{split}
end{equation} Biggrrvert$
$= arctan x - (-xfrac{1}{2}frac{1}{x^2+1} + frac{1}{2} int frac{dx}{x^2+1})$
$= arctan x + frac{x}{2(x^2+1)} - frac{1}{2}arctan x + C = frac{1}{2}arctan x + frac{x}{2(x^2+1)} + C$
Thank you.
real-analysis calculus integration
$endgroup$
add a comment |
$begingroup$
Would anyone help me calculate the following integral? $int frac{dx}{(x^2+1)^3}$
During our lecutre we've done very similiar one, $int frac{dx}{(x^2+1)^2}$ like that:
$int frac{dx}{(x^2+1)^2} = int frac{x^2+1-x^2}{(x^2+1)^2}dx = int frac{1}{x^2+1}dx - int frac{x^2}{(x^2+1)^2}dx = $
$= Biggrrvert begin{equation}
begin{split}
& u = x quad v' =frac{x}{(x^2+1)^2} =frac{1(x^2+1)'}{2(x^2+1)^2}\
& u' = 1 quad v = -frac{1}{2} frac{1}{x^2+1}
end{split}
end{equation} Biggrrvert$
$= arctan x - (-xfrac{1}{2}frac{1}{x^2+1} + frac{1}{2} int frac{dx}{x^2+1})$
$= arctan x + frac{x}{2(x^2+1)} - frac{1}{2}arctan x + C = frac{1}{2}arctan x + frac{x}{2(x^2+1)} + C$
Thank you.
real-analysis calculus integration
$endgroup$
add a comment |
$begingroup$
Would anyone help me calculate the following integral? $int frac{dx}{(x^2+1)^3}$
During our lecutre we've done very similiar one, $int frac{dx}{(x^2+1)^2}$ like that:
$int frac{dx}{(x^2+1)^2} = int frac{x^2+1-x^2}{(x^2+1)^2}dx = int frac{1}{x^2+1}dx - int frac{x^2}{(x^2+1)^2}dx = $
$= Biggrrvert begin{equation}
begin{split}
& u = x quad v' =frac{x}{(x^2+1)^2} =frac{1(x^2+1)'}{2(x^2+1)^2}\
& u' = 1 quad v = -frac{1}{2} frac{1}{x^2+1}
end{split}
end{equation} Biggrrvert$
$= arctan x - (-xfrac{1}{2}frac{1}{x^2+1} + frac{1}{2} int frac{dx}{x^2+1})$
$= arctan x + frac{x}{2(x^2+1)} - frac{1}{2}arctan x + C = frac{1}{2}arctan x + frac{x}{2(x^2+1)} + C$
Thank you.
real-analysis calculus integration
$endgroup$
Would anyone help me calculate the following integral? $int frac{dx}{(x^2+1)^3}$
During our lecutre we've done very similiar one, $int frac{dx}{(x^2+1)^2}$ like that:
$int frac{dx}{(x^2+1)^2} = int frac{x^2+1-x^2}{(x^2+1)^2}dx = int frac{1}{x^2+1}dx - int frac{x^2}{(x^2+1)^2}dx = $
$= Biggrrvert begin{equation}
begin{split}
& u = x quad v' =frac{x}{(x^2+1)^2} =frac{1(x^2+1)'}{2(x^2+1)^2}\
& u' = 1 quad v = -frac{1}{2} frac{1}{x^2+1}
end{split}
end{equation} Biggrrvert$
$= arctan x - (-xfrac{1}{2}frac{1}{x^2+1} + frac{1}{2} int frac{dx}{x^2+1})$
$= arctan x + frac{x}{2(x^2+1)} - frac{1}{2}arctan x + C = frac{1}{2}arctan x + frac{x}{2(x^2+1)} + C$
Thank you.
real-analysis calculus integration
real-analysis calculus integration
asked Jan 9 at 16:18
wenoweno
30511
30511
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
We will find a general reduction formula for the integral
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
Integration by parts with
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
Yields
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
Now for the base case $I_1$:
$$I_1=intfrac{dx}{ax^2+b}$$
Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
$$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
$$I_1=frac1{sqrt{ab}}int du$$
$$I_1=frac{u}{sqrt{ab}}$$
$$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
Plug in your specific $a,b$ and $n$, and you're good to go.
Edit: Whatever I'll just give you the answer.
Plugging in $a=1, b=1, n=3$ we have
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
Note that
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
So
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$
$endgroup$
add a comment |
$begingroup$
So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
$$
begin{split}
f_3(x)
&= int frac{dx}{left(x^2+1right)^3}\
&= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
&= f_2(x) - text{proceed by parts as before}
end{split}
$$
$endgroup$
add a comment |
$begingroup$
Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.
$endgroup$
add a comment |
$begingroup$
I used:
$$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
which leads to:
$$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$
Which is resolved simply.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067632%2fcalculating-int-fracdxx213-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We will find a general reduction formula for the integral
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
Integration by parts with
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
Yields
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
Now for the base case $I_1$:
$$I_1=intfrac{dx}{ax^2+b}$$
Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
$$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
$$I_1=frac1{sqrt{ab}}int du$$
$$I_1=frac{u}{sqrt{ab}}$$
$$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
Plug in your specific $a,b$ and $n$, and you're good to go.
Edit: Whatever I'll just give you the answer.
Plugging in $a=1, b=1, n=3$ we have
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
Note that
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
So
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$
$endgroup$
add a comment |
$begingroup$
We will find a general reduction formula for the integral
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
Integration by parts with
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
Yields
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
Now for the base case $I_1$:
$$I_1=intfrac{dx}{ax^2+b}$$
Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
$$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
$$I_1=frac1{sqrt{ab}}int du$$
$$I_1=frac{u}{sqrt{ab}}$$
$$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
Plug in your specific $a,b$ and $n$, and you're good to go.
Edit: Whatever I'll just give you the answer.
Plugging in $a=1, b=1, n=3$ we have
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
Note that
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
So
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$
$endgroup$
add a comment |
$begingroup$
We will find a general reduction formula for the integral
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
Integration by parts with
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
Yields
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
Now for the base case $I_1$:
$$I_1=intfrac{dx}{ax^2+b}$$
Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
$$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
$$I_1=frac1{sqrt{ab}}int du$$
$$I_1=frac{u}{sqrt{ab}}$$
$$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
Plug in your specific $a,b$ and $n$, and you're good to go.
Edit: Whatever I'll just give you the answer.
Plugging in $a=1, b=1, n=3$ we have
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
Note that
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
So
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$
$endgroup$
We will find a general reduction formula for the integral
$$I_n=intfrac{dx}{(ax^2+b)^n}$$
Integration by parts with
$$dv=dxRightarrow v=x\ u=frac1{(ax^2+b)^n}Rightarrow du=frac{-2anx}{(ax^2+b)^{n+1}}dx$$
Yields
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2}{(ax^2+b)^{n+1}}dx$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{ax^2+b}{(ax^2+b)^{n+1}}dx-2bnintfrac{dx}{(ax^2+b)^{n+1}}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nintfrac{dx}{(ax^2+b)^{n}}-2bnI_{n+1}$$
$$I_n=frac{x}{(ax^2+b)^n}+2nI_n-2bnI_{n+1}$$
$$2bnI_{n+1}=frac{x}{(ax^2+b)^n}+(2n-1)I_n$$
$$I_{n+1}=frac{x}{2bn(ax^2+b)^n}+frac{2n-1}{2bn}I_n$$
replacing $n+1$ with $n$,
$$I_{n}=frac{x}{2b(n-1)(ax^2+b)^{n-1}}+frac{2n-3}{2b(n-1)}I_{n-1}$$
Now for the base case $I_1$:
$$I_1=intfrac{dx}{ax^2+b}$$
Let $$x=sqrt{frac{b}a}tan uRightarrow dx=sqrt{frac{b}a}sec^2u, du$$
So $$I_1=sqrt{frac{b}a}intfrac{sec^2u}{btan^2u+b}du$$
$$I_1=frac1{sqrt{ab}}intfrac{sec^2u}{sec^2u}du$$
$$I_1=frac1{sqrt{ab}}int du$$
$$I_1=frac{u}{sqrt{ab}}$$
$$I_1=frac1{sqrt{ab}}arctansqrt{frac{a}{b}}x+C$$
Plug in your specific $a,b$ and $n$, and you're good to go.
Edit: Whatever I'll just give you the answer.
Plugging in $a=1, b=1, n=3$ we have
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3}{4}I_{2}$$
Note that
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}I_{1}$$
$$I_{2}=frac{x}{2(x^2+1)}+frac{1}{2}arctan x+C$$
So
$$I_{3}=frac{x}{4(x^2+1)^{2}}+frac{3x}{8(x^2+1)}+frac{3}{8}arctan x+C$$
edited Jan 9 at 23:27
answered Jan 9 at 16:58
clathratusclathratus
4,174336
4,174336
add a comment |
add a comment |
$begingroup$
So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
$$
begin{split}
f_3(x)
&= int frac{dx}{left(x^2+1right)^3}\
&= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
&= f_2(x) - text{proceed by parts as before}
end{split}
$$
$endgroup$
add a comment |
$begingroup$
So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
$$
begin{split}
f_3(x)
&= int frac{dx}{left(x^2+1right)^3}\
&= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
&= f_2(x) - text{proceed by parts as before}
end{split}
$$
$endgroup$
add a comment |
$begingroup$
So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
$$
begin{split}
f_3(x)
&= int frac{dx}{left(x^2+1right)^3}\
&= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
&= f_2(x) - text{proceed by parts as before}
end{split}
$$
$endgroup$
So why not use the same trick? Since you know from lecture what $$f_2(x) = int frac{dx}{left(x^2+1right)^2}$$ is, you now have
$$
begin{split}
f_3(x)
&= int frac{dx}{left(x^2+1right)^3}\
&= int frac{dx}{left(x^2+1right)^2} - int x cdot frac{xdx}{left(x^2+1right)^3}\
&= f_2(x) - text{proceed by parts as before}
end{split}
$$
answered Jan 9 at 16:24
gt6989bgt6989b
33.9k22455
33.9k22455
add a comment |
add a comment |
$begingroup$
Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.
$endgroup$
add a comment |
$begingroup$
Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.
$endgroup$
add a comment |
$begingroup$
Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.
$endgroup$
Use $$int frac{dx}{(x^2+1)^3}=frac{x}{4(x^2+1)^2}+frac{3}{4}int frac{dx}{(x^2+1)^2}$$ and then use the value for the integral you already calculated.
answered Jan 9 at 16:23
aledenaleden
2,057511
2,057511
add a comment |
add a comment |
$begingroup$
I used:
$$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
which leads to:
$$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$
Which is resolved simply.
$endgroup$
add a comment |
$begingroup$
I used:
$$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
which leads to:
$$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$
Which is resolved simply.
$endgroup$
add a comment |
$begingroup$
I used:
$$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
which leads to:
$$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$
Which is resolved simply.
$endgroup$
I used:
$$p=x^2+1to dx =frac{1}{2sqrt{p-1}}$$
which leads to:
$$int{frac{dx}{(x^2+1)^3}=frac12 int{frac{dp}{psqrt{p-1}}}}$$
Then the substitution $$q=sqrt{p-1}to dp=2qspace dq$$
Leads to $$frac12intfrac{dp}{psqrt{p-1}}=frac12intfrac{2q}{q(q^2+1)}dq=intfrac{dq}{q^2+1}$$
Which is resolved simply.
answered Jan 9 at 16:34
Rhys HughesRhys Hughes
5,8531529
5,8531529
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067632%2fcalculating-int-fracdxx213-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown