Show that Kernel density estimate integrates to 1
$begingroup$
I'm trying to show that the Kernel density estimate
$$ f(x) = frac1{nb}sum_{i=1}^nK left(frac {X_i - x}bright) $$
actually integrates to 1. The $X_i$ are iid and K is a symmetric probability density function; in particular, K integrates to 1. What I get is
$$int_{-infty}^{infty} frac1{nb}sum_{i=1}^nKleft(frac {X_i - x}bright) dx$$
$$ = frac1{nb}int_{-infty}^{infty} sum_{i=1}^nKleft(frac {X_i - x}bright) dx $$
$$=frac1{nb}sum_{i=1}^nint_{-infty}^{infty} Kleft(frac {X_i - x}bright) dx$$
$$=frac1{b}int_{-infty}^{infty} Kleft(frac {X_i - x}bright) dx$$
Using as a substitution
$$ u = frac {X_i - x}b$$
$$ dx = -b du$$
we get
$$=frac1{b}int_{-infty}^{infty} K(u) (-b) du $$
$$= (-b) frac1{b}int_{-infty}^{infty} K(u) du = -1$$
Something must have gone wrong with the integration. I know that $f(x)$ is often defined differently, as
$$ f'(x) = frac1{nb}sum_{i=1}^nKleft(frac {x - X_i}bright) $$
and with this version I can show that it integrates to 1. However $f'(x)$ and $f(x)$ should be equivalent as $K$ is symmetric. So there is some flaw in my calculations (my knowledge about integration with substitution is purely heuristic).
integration statistics probability-distributions improper-integrals
$endgroup$
add a comment |
$begingroup$
I'm trying to show that the Kernel density estimate
$$ f(x) = frac1{nb}sum_{i=1}^nK left(frac {X_i - x}bright) $$
actually integrates to 1. The $X_i$ are iid and K is a symmetric probability density function; in particular, K integrates to 1. What I get is
$$int_{-infty}^{infty} frac1{nb}sum_{i=1}^nKleft(frac {X_i - x}bright) dx$$
$$ = frac1{nb}int_{-infty}^{infty} sum_{i=1}^nKleft(frac {X_i - x}bright) dx $$
$$=frac1{nb}sum_{i=1}^nint_{-infty}^{infty} Kleft(frac {X_i - x}bright) dx$$
$$=frac1{b}int_{-infty}^{infty} Kleft(frac {X_i - x}bright) dx$$
Using as a substitution
$$ u = frac {X_i - x}b$$
$$ dx = -b du$$
we get
$$=frac1{b}int_{-infty}^{infty} K(u) (-b) du $$
$$= (-b) frac1{b}int_{-infty}^{infty} K(u) du = -1$$
Something must have gone wrong with the integration. I know that $f(x)$ is often defined differently, as
$$ f'(x) = frac1{nb}sum_{i=1}^nKleft(frac {x - X_i}bright) $$
and with this version I can show that it integrates to 1. However $f'(x)$ and $f(x)$ should be equivalent as $K$ is symmetric. So there is some flaw in my calculations (my knowledge about integration with substitution is purely heuristic).
integration statistics probability-distributions improper-integrals
$endgroup$
add a comment |
$begingroup$
I'm trying to show that the Kernel density estimate
$$ f(x) = frac1{nb}sum_{i=1}^nK left(frac {X_i - x}bright) $$
actually integrates to 1. The $X_i$ are iid and K is a symmetric probability density function; in particular, K integrates to 1. What I get is
$$int_{-infty}^{infty} frac1{nb}sum_{i=1}^nKleft(frac {X_i - x}bright) dx$$
$$ = frac1{nb}int_{-infty}^{infty} sum_{i=1}^nKleft(frac {X_i - x}bright) dx $$
$$=frac1{nb}sum_{i=1}^nint_{-infty}^{infty} Kleft(frac {X_i - x}bright) dx$$
$$=frac1{b}int_{-infty}^{infty} Kleft(frac {X_i - x}bright) dx$$
Using as a substitution
$$ u = frac {X_i - x}b$$
$$ dx = -b du$$
we get
$$=frac1{b}int_{-infty}^{infty} K(u) (-b) du $$
$$= (-b) frac1{b}int_{-infty}^{infty} K(u) du = -1$$
Something must have gone wrong with the integration. I know that $f(x)$ is often defined differently, as
$$ f'(x) = frac1{nb}sum_{i=1}^nKleft(frac {x - X_i}bright) $$
and with this version I can show that it integrates to 1. However $f'(x)$ and $f(x)$ should be equivalent as $K$ is symmetric. So there is some flaw in my calculations (my knowledge about integration with substitution is purely heuristic).
integration statistics probability-distributions improper-integrals
$endgroup$
I'm trying to show that the Kernel density estimate
$$ f(x) = frac1{nb}sum_{i=1}^nK left(frac {X_i - x}bright) $$
actually integrates to 1. The $X_i$ are iid and K is a symmetric probability density function; in particular, K integrates to 1. What I get is
$$int_{-infty}^{infty} frac1{nb}sum_{i=1}^nKleft(frac {X_i - x}bright) dx$$
$$ = frac1{nb}int_{-infty}^{infty} sum_{i=1}^nKleft(frac {X_i - x}bright) dx $$
$$=frac1{nb}sum_{i=1}^nint_{-infty}^{infty} Kleft(frac {X_i - x}bright) dx$$
$$=frac1{b}int_{-infty}^{infty} Kleft(frac {X_i - x}bright) dx$$
Using as a substitution
$$ u = frac {X_i - x}b$$
$$ dx = -b du$$
we get
$$=frac1{b}int_{-infty}^{infty} K(u) (-b) du $$
$$= (-b) frac1{b}int_{-infty}^{infty} K(u) du = -1$$
Something must have gone wrong with the integration. I know that $f(x)$ is often defined differently, as
$$ f'(x) = frac1{nb}sum_{i=1}^nKleft(frac {x - X_i}bright) $$
and with this version I can show that it integrates to 1. However $f'(x)$ and $f(x)$ should be equivalent as $K$ is symmetric. So there is some flaw in my calculations (my knowledge about integration with substitution is purely heuristic).
integration statistics probability-distributions improper-integrals
integration statistics probability-distributions improper-integrals
edited Jan 9 at 16:28
Chinnapparaj R
5,4331928
5,4331928
asked Jan 9 at 16:26
CariieCariie
133
133
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$require{cancel}$
begin{align}
int_{-infty}^{+infty} f(x)~{rm d}x &= frac{1}{nb}sum_{i = 1}^n int_{-infty}^{+infty} Kleft(frac{X_i - x}{b}right){rm d}x & text{with } ~u = frac{X_i - x}{b},~{rm d}u = -{rm d}x/b \
&= -frac{1}{n}sum_{i=1}^n int_{+infty}^{-infty} K(u)~{rm du} \
&= frac{1}{n}sum_{i=1}^n cancelto{1}{int_{-infty}^{+infty}K(u){rm d}u} \
&= frac{1}{cancel{n}} cancel{n} = 1
end{align}
The part you need to pay attention to is the limits, when $xto +infty$ you have $u to -infty$ and vice versa. So the limits of the integral change of order
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067653%2fshow-that-kernel-density-estimate-integrates-to-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$require{cancel}$
begin{align}
int_{-infty}^{+infty} f(x)~{rm d}x &= frac{1}{nb}sum_{i = 1}^n int_{-infty}^{+infty} Kleft(frac{X_i - x}{b}right){rm d}x & text{with } ~u = frac{X_i - x}{b},~{rm d}u = -{rm d}x/b \
&= -frac{1}{n}sum_{i=1}^n int_{+infty}^{-infty} K(u)~{rm du} \
&= frac{1}{n}sum_{i=1}^n cancelto{1}{int_{-infty}^{+infty}K(u){rm d}u} \
&= frac{1}{cancel{n}} cancel{n} = 1
end{align}
The part you need to pay attention to is the limits, when $xto +infty$ you have $u to -infty$ and vice versa. So the limits of the integral change of order
$endgroup$
add a comment |
$begingroup$
$require{cancel}$
begin{align}
int_{-infty}^{+infty} f(x)~{rm d}x &= frac{1}{nb}sum_{i = 1}^n int_{-infty}^{+infty} Kleft(frac{X_i - x}{b}right){rm d}x & text{with } ~u = frac{X_i - x}{b},~{rm d}u = -{rm d}x/b \
&= -frac{1}{n}sum_{i=1}^n int_{+infty}^{-infty} K(u)~{rm du} \
&= frac{1}{n}sum_{i=1}^n cancelto{1}{int_{-infty}^{+infty}K(u){rm d}u} \
&= frac{1}{cancel{n}} cancel{n} = 1
end{align}
The part you need to pay attention to is the limits, when $xto +infty$ you have $u to -infty$ and vice versa. So the limits of the integral change of order
$endgroup$
add a comment |
$begingroup$
$require{cancel}$
begin{align}
int_{-infty}^{+infty} f(x)~{rm d}x &= frac{1}{nb}sum_{i = 1}^n int_{-infty}^{+infty} Kleft(frac{X_i - x}{b}right){rm d}x & text{with } ~u = frac{X_i - x}{b},~{rm d}u = -{rm d}x/b \
&= -frac{1}{n}sum_{i=1}^n int_{+infty}^{-infty} K(u)~{rm du} \
&= frac{1}{n}sum_{i=1}^n cancelto{1}{int_{-infty}^{+infty}K(u){rm d}u} \
&= frac{1}{cancel{n}} cancel{n} = 1
end{align}
The part you need to pay attention to is the limits, when $xto +infty$ you have $u to -infty$ and vice versa. So the limits of the integral change of order
$endgroup$
$require{cancel}$
begin{align}
int_{-infty}^{+infty} f(x)~{rm d}x &= frac{1}{nb}sum_{i = 1}^n int_{-infty}^{+infty} Kleft(frac{X_i - x}{b}right){rm d}x & text{with } ~u = frac{X_i - x}{b},~{rm d}u = -{rm d}x/b \
&= -frac{1}{n}sum_{i=1}^n int_{+infty}^{-infty} K(u)~{rm du} \
&= frac{1}{n}sum_{i=1}^n cancelto{1}{int_{-infty}^{+infty}K(u){rm d}u} \
&= frac{1}{cancel{n}} cancel{n} = 1
end{align}
The part you need to pay attention to is the limits, when $xto +infty$ you have $u to -infty$ and vice versa. So the limits of the integral change of order
answered Jan 9 at 16:37
caveraccaverac
14.5k31130
14.5k31130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067653%2fshow-that-kernel-density-estimate-integrates-to-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown