If $X$ is strongly Markovian at $tau$ is $X_{tau+;cdot;}$ a Markov process?












0












$begingroup$


Let





  • $(Omega,mathcal A,operatorname P)$ be a probability space


  • $I=[0,infty)$ or $I=mathbb N_0$


  • $(mathcal F_t)_{tin I}$ be a filtration on $(Omega,mathcal A)$


  • $(E,mathcal E)$ be a measurable space


  • $delta_x$ denote the Dirac measure on $(E,mathcal E)$ at $xin E$


  • $(X_t)_{tin I}$ be an $(E,mathcal E)$-valued $mathcal F$-Markov process on $(Omega,mathcal A,operatorname P)$ with transition semigroup $(kappa_t)_{tin I}$


  • $kappa$ be a Markov kernel with source $(E,mathcal E)$ and target $(E^I,mathcal E^{otimes I})$ with $$kappa(x,left{yin E^I:(y_{t_0},ldots,y_{t_n})in Bright})=left(delta_xotimesbigotimes_{i=1}^nkappa_{t_i-t_{i-1}}right)(B)$$ for all $ninmathbb N$, $Binmathcal E^{n+1}$ and $t_0,ldots,t_nin I$ with $0=t_0<ldots<t_n$


  • $tau$ be an $mathcal F$-stopping time



We say that $X$ is strongly $mathcal F$-Markovian at $tau$ if $$1_{left{:tau:<:infty:right}}operatorname Eleft[fleft(left(X_{tau+t}right)_{tin I}right)midmathcal F_tauright]=1_{left{:tau:<:infty:right}}(kappa f)(X_tau);;;text{almost surely}tag1$$ for all bounded and $mathcal E^{otimes I}$-measurable $f:E^Itomathbb R$ (As usual, $kappa f:=intkappa(;cdot;,{rm d}y)f(y)$).




What can we conclude from $(1)$? In particular,




  1. Does $(1)$ imply that $left(X_{tau+t}right)_{tin I}$ is again a Markov process? If so, with respect to which filtration and how do we prove it?


  2. At Wikipedia, they say that $(1)$ implies that "conditioned on $left{tau<inftyright}$, $X_{tau+t}$ is independent of $$mathcal F_{tau^+}:=left{Ainmathcal A:left{tau=tright}cap Ainmathcal F_{t+}:=bigcap_{substack{sin I\s>t}}mathcal F_stext{ for all }tin Iright}$$ given $X_tau$". What does that mean? Maybe $$operatorname Pleft[Acap Bmidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]=operatorname Pleft[Amidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]operatorname Pleft[Bmidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]tag2$$ almost surely for all $Ainsigma(X_{tau+t})$ and $Binsigma(X_tau)$, where $left.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}$ denotes the trace $sigma$-algebra?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Let





    • $(Omega,mathcal A,operatorname P)$ be a probability space


    • $I=[0,infty)$ or $I=mathbb N_0$


    • $(mathcal F_t)_{tin I}$ be a filtration on $(Omega,mathcal A)$


    • $(E,mathcal E)$ be a measurable space


    • $delta_x$ denote the Dirac measure on $(E,mathcal E)$ at $xin E$


    • $(X_t)_{tin I}$ be an $(E,mathcal E)$-valued $mathcal F$-Markov process on $(Omega,mathcal A,operatorname P)$ with transition semigroup $(kappa_t)_{tin I}$


    • $kappa$ be a Markov kernel with source $(E,mathcal E)$ and target $(E^I,mathcal E^{otimes I})$ with $$kappa(x,left{yin E^I:(y_{t_0},ldots,y_{t_n})in Bright})=left(delta_xotimesbigotimes_{i=1}^nkappa_{t_i-t_{i-1}}right)(B)$$ for all $ninmathbb N$, $Binmathcal E^{n+1}$ and $t_0,ldots,t_nin I$ with $0=t_0<ldots<t_n$


    • $tau$ be an $mathcal F$-stopping time



    We say that $X$ is strongly $mathcal F$-Markovian at $tau$ if $$1_{left{:tau:<:infty:right}}operatorname Eleft[fleft(left(X_{tau+t}right)_{tin I}right)midmathcal F_tauright]=1_{left{:tau:<:infty:right}}(kappa f)(X_tau);;;text{almost surely}tag1$$ for all bounded and $mathcal E^{otimes I}$-measurable $f:E^Itomathbb R$ (As usual, $kappa f:=intkappa(;cdot;,{rm d}y)f(y)$).




    What can we conclude from $(1)$? In particular,




    1. Does $(1)$ imply that $left(X_{tau+t}right)_{tin I}$ is again a Markov process? If so, with respect to which filtration and how do we prove it?


    2. At Wikipedia, they say that $(1)$ implies that "conditioned on $left{tau<inftyright}$, $X_{tau+t}$ is independent of $$mathcal F_{tau^+}:=left{Ainmathcal A:left{tau=tright}cap Ainmathcal F_{t+}:=bigcap_{substack{sin I\s>t}}mathcal F_stext{ for all }tin Iright}$$ given $X_tau$". What does that mean? Maybe $$operatorname Pleft[Acap Bmidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]=operatorname Pleft[Amidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]operatorname Pleft[Bmidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]tag2$$ almost surely for all $Ainsigma(X_{tau+t})$ and $Binsigma(X_tau)$, where $left.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}$ denotes the trace $sigma$-algebra?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $I=[0,infty)$ or $I=mathbb N_0$


      • $(mathcal F_t)_{tin I}$ be a filtration on $(Omega,mathcal A)$


      • $(E,mathcal E)$ be a measurable space


      • $delta_x$ denote the Dirac measure on $(E,mathcal E)$ at $xin E$


      • $(X_t)_{tin I}$ be an $(E,mathcal E)$-valued $mathcal F$-Markov process on $(Omega,mathcal A,operatorname P)$ with transition semigroup $(kappa_t)_{tin I}$


      • $kappa$ be a Markov kernel with source $(E,mathcal E)$ and target $(E^I,mathcal E^{otimes I})$ with $$kappa(x,left{yin E^I:(y_{t_0},ldots,y_{t_n})in Bright})=left(delta_xotimesbigotimes_{i=1}^nkappa_{t_i-t_{i-1}}right)(B)$$ for all $ninmathbb N$, $Binmathcal E^{n+1}$ and $t_0,ldots,t_nin I$ with $0=t_0<ldots<t_n$


      • $tau$ be an $mathcal F$-stopping time



      We say that $X$ is strongly $mathcal F$-Markovian at $tau$ if $$1_{left{:tau:<:infty:right}}operatorname Eleft[fleft(left(X_{tau+t}right)_{tin I}right)midmathcal F_tauright]=1_{left{:tau:<:infty:right}}(kappa f)(X_tau);;;text{almost surely}tag1$$ for all bounded and $mathcal E^{otimes I}$-measurable $f:E^Itomathbb R$ (As usual, $kappa f:=intkappa(;cdot;,{rm d}y)f(y)$).




      What can we conclude from $(1)$? In particular,




      1. Does $(1)$ imply that $left(X_{tau+t}right)_{tin I}$ is again a Markov process? If so, with respect to which filtration and how do we prove it?


      2. At Wikipedia, they say that $(1)$ implies that "conditioned on $left{tau<inftyright}$, $X_{tau+t}$ is independent of $$mathcal F_{tau^+}:=left{Ainmathcal A:left{tau=tright}cap Ainmathcal F_{t+}:=bigcap_{substack{sin I\s>t}}mathcal F_stext{ for all }tin Iright}$$ given $X_tau$". What does that mean? Maybe $$operatorname Pleft[Acap Bmidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]=operatorname Pleft[Amidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]operatorname Pleft[Bmidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]tag2$$ almost surely for all $Ainsigma(X_{tau+t})$ and $Binsigma(X_tau)$, where $left.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}$ denotes the trace $sigma$-algebra?










      share|cite|improve this question









      $endgroup$




      Let





      • $(Omega,mathcal A,operatorname P)$ be a probability space


      • $I=[0,infty)$ or $I=mathbb N_0$


      • $(mathcal F_t)_{tin I}$ be a filtration on $(Omega,mathcal A)$


      • $(E,mathcal E)$ be a measurable space


      • $delta_x$ denote the Dirac measure on $(E,mathcal E)$ at $xin E$


      • $(X_t)_{tin I}$ be an $(E,mathcal E)$-valued $mathcal F$-Markov process on $(Omega,mathcal A,operatorname P)$ with transition semigroup $(kappa_t)_{tin I}$


      • $kappa$ be a Markov kernel with source $(E,mathcal E)$ and target $(E^I,mathcal E^{otimes I})$ with $$kappa(x,left{yin E^I:(y_{t_0},ldots,y_{t_n})in Bright})=left(delta_xotimesbigotimes_{i=1}^nkappa_{t_i-t_{i-1}}right)(B)$$ for all $ninmathbb N$, $Binmathcal E^{n+1}$ and $t_0,ldots,t_nin I$ with $0=t_0<ldots<t_n$


      • $tau$ be an $mathcal F$-stopping time



      We say that $X$ is strongly $mathcal F$-Markovian at $tau$ if $$1_{left{:tau:<:infty:right}}operatorname Eleft[fleft(left(X_{tau+t}right)_{tin I}right)midmathcal F_tauright]=1_{left{:tau:<:infty:right}}(kappa f)(X_tau);;;text{almost surely}tag1$$ for all bounded and $mathcal E^{otimes I}$-measurable $f:E^Itomathbb R$ (As usual, $kappa f:=intkappa(;cdot;,{rm d}y)f(y)$).




      What can we conclude from $(1)$? In particular,




      1. Does $(1)$ imply that $left(X_{tau+t}right)_{tin I}$ is again a Markov process? If so, with respect to which filtration and how do we prove it?


      2. At Wikipedia, they say that $(1)$ implies that "conditioned on $left{tau<inftyright}$, $X_{tau+t}$ is independent of $$mathcal F_{tau^+}:=left{Ainmathcal A:left{tau=tright}cap Ainmathcal F_{t+}:=bigcap_{substack{sin I\s>t}}mathcal F_stext{ for all }tin Iright}$$ given $X_tau$". What does that mean? Maybe $$operatorname Pleft[Acap Bmidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]=operatorname Pleft[Amidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]operatorname Pleft[Bmidleft.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}right]tag2$$ almost surely for all $Ainsigma(X_{tau+t})$ and $Binsigma(X_tau)$, where $left.mathcal F_{tau+}right|_{left{:tau:<:infty:right}}$ denotes the trace $sigma$-algebra?







      probability-theory stochastic-processes markov-chains markov-process






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 9 at 16:25









      0xbadf00d0xbadf00d

      1,89841531




      1,89841531






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067651%2fif-x-is-strongly-markovian-at-tau-is-x-tau-cdot-a-markov-process%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067651%2fif-x-is-strongly-markovian-at-tau-is-x-tau-cdot-a-markov-process%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]