Inequality in 3 variables with a constraint condition
$begingroup$
To prove : a(b+c)/bc + b(c+a)/ca + c(a+b)/ab > 2/(ab+bc+ca) where a+b+c=1 and a,b,c are positive real numbers
Here's my way : Add 1 to each summand in the LHS and subtract 3 (=1+1+1) and after some algebraic manipulation I got (ab+bc+ac)/abc > 2/(ab+bc+ac) +3 which again after some algebra reduces to a²b²+b²c²+a²c² +2abc(a+b+c) > 2+3abc(a+b+c)=> a²b²+b²c²+a²c² > 2+abc . Now, this obviously true for positive a,b,c but I can't prove it rigorously this.
inequality contest-math cauchy-schwarz-inequality
$endgroup$
add a comment |
$begingroup$
To prove : a(b+c)/bc + b(c+a)/ca + c(a+b)/ab > 2/(ab+bc+ca) where a+b+c=1 and a,b,c are positive real numbers
Here's my way : Add 1 to each summand in the LHS and subtract 3 (=1+1+1) and after some algebraic manipulation I got (ab+bc+ac)/abc > 2/(ab+bc+ac) +3 which again after some algebra reduces to a²b²+b²c²+a²c² +2abc(a+b+c) > 2+3abc(a+b+c)=> a²b²+b²c²+a²c² > 2+abc . Now, this obviously true for positive a,b,c but I can't prove it rigorously this.
inequality contest-math cauchy-schwarz-inequality
$endgroup$
add a comment |
$begingroup$
To prove : a(b+c)/bc + b(c+a)/ca + c(a+b)/ab > 2/(ab+bc+ca) where a+b+c=1 and a,b,c are positive real numbers
Here's my way : Add 1 to each summand in the LHS and subtract 3 (=1+1+1) and after some algebraic manipulation I got (ab+bc+ac)/abc > 2/(ab+bc+ac) +3 which again after some algebra reduces to a²b²+b²c²+a²c² +2abc(a+b+c) > 2+3abc(a+b+c)=> a²b²+b²c²+a²c² > 2+abc . Now, this obviously true for positive a,b,c but I can't prove it rigorously this.
inequality contest-math cauchy-schwarz-inequality
$endgroup$
To prove : a(b+c)/bc + b(c+a)/ca + c(a+b)/ab > 2/(ab+bc+ca) where a+b+c=1 and a,b,c are positive real numbers
Here's my way : Add 1 to each summand in the LHS and subtract 3 (=1+1+1) and after some algebraic manipulation I got (ab+bc+ac)/abc > 2/(ab+bc+ac) +3 which again after some algebra reduces to a²b²+b²c²+a²c² +2abc(a+b+c) > 2+3abc(a+b+c)=> a²b²+b²c²+a²c² > 2+abc . Now, this obviously true for positive a,b,c but I can't prove it rigorously this.
inequality contest-math cauchy-schwarz-inequality
inequality contest-math cauchy-schwarz-inequality
edited Jan 9 at 22:13
Michael Rozenberg
101k1591193
101k1591193
asked Jan 9 at 16:31
Epsilon zeroEpsilon zero
35118
35118
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If we arrange
$$
frac{ab+bc+ac}{abc} ge frac{2}{ab+bc+ac} +3
$$ then we have
$$
(ab+bc+ac)^2 =sum_{text{cyc}}a^2b^2 +2abcge abc(2+3(ab+bc+ac))=2abc +3sum_{text{cyc}}a^2b^2c.
$$ We need to show
$$
sum_{text{cyc}}a^2b^2ge 3sum_{text{cyc}}a^2b^2c.
$$ This is equivalent to
$$
sum_{text{cyc}}a^2b^2(a+b+c)ge 3sum_{text{cyc}}a^2b^2c.
$$ By rearrangement, we have
$$
sum_{text{cyc}}a^3b^2ge sum_{text{cyc}}a^2b^2c,
$$and
$$
sum_{text{cyc}}a^2b^3ge sum_{text{cyc}}a^2b^2c.
$$ This proves the inequality.
Another approach: We need to show
$$
sum_{text{cyc}}frac{a}{b}+sum_{text{cyc}}frac{a}{c}ge frac{2}{ab+bc+ca}.
$$ By C-S, we have
$$
sum_{text{cyc}}frac{a}{b}sum_{text{cyc}}abge left(sum_{text{cyc}}aright)^2 =1,
$$ and
$$
sum_{text{cyc}}frac{a}{c}sum_{text{cyc}}acge left(sum_{text{cyc}}aright)^2 =1.
$$
$endgroup$
add a comment |
$begingroup$
Because by C-S
$$(ab+ac+bc)sum_{cyc}frac{a(b+c)}{bc}=sum_{cyc}acsum_{cyc}frac{a}{c}+sum_{cyc}absum_{cyc}frac{a}{b}geq$$
$$geq(a+b+c)^2+(a+b+c)^2=2.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067665%2finequality-in-3-variables-with-a-constraint-condition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If we arrange
$$
frac{ab+bc+ac}{abc} ge frac{2}{ab+bc+ac} +3
$$ then we have
$$
(ab+bc+ac)^2 =sum_{text{cyc}}a^2b^2 +2abcge abc(2+3(ab+bc+ac))=2abc +3sum_{text{cyc}}a^2b^2c.
$$ We need to show
$$
sum_{text{cyc}}a^2b^2ge 3sum_{text{cyc}}a^2b^2c.
$$ This is equivalent to
$$
sum_{text{cyc}}a^2b^2(a+b+c)ge 3sum_{text{cyc}}a^2b^2c.
$$ By rearrangement, we have
$$
sum_{text{cyc}}a^3b^2ge sum_{text{cyc}}a^2b^2c,
$$and
$$
sum_{text{cyc}}a^2b^3ge sum_{text{cyc}}a^2b^2c.
$$ This proves the inequality.
Another approach: We need to show
$$
sum_{text{cyc}}frac{a}{b}+sum_{text{cyc}}frac{a}{c}ge frac{2}{ab+bc+ca}.
$$ By C-S, we have
$$
sum_{text{cyc}}frac{a}{b}sum_{text{cyc}}abge left(sum_{text{cyc}}aright)^2 =1,
$$ and
$$
sum_{text{cyc}}frac{a}{c}sum_{text{cyc}}acge left(sum_{text{cyc}}aright)^2 =1.
$$
$endgroup$
add a comment |
$begingroup$
If we arrange
$$
frac{ab+bc+ac}{abc} ge frac{2}{ab+bc+ac} +3
$$ then we have
$$
(ab+bc+ac)^2 =sum_{text{cyc}}a^2b^2 +2abcge abc(2+3(ab+bc+ac))=2abc +3sum_{text{cyc}}a^2b^2c.
$$ We need to show
$$
sum_{text{cyc}}a^2b^2ge 3sum_{text{cyc}}a^2b^2c.
$$ This is equivalent to
$$
sum_{text{cyc}}a^2b^2(a+b+c)ge 3sum_{text{cyc}}a^2b^2c.
$$ By rearrangement, we have
$$
sum_{text{cyc}}a^3b^2ge sum_{text{cyc}}a^2b^2c,
$$and
$$
sum_{text{cyc}}a^2b^3ge sum_{text{cyc}}a^2b^2c.
$$ This proves the inequality.
Another approach: We need to show
$$
sum_{text{cyc}}frac{a}{b}+sum_{text{cyc}}frac{a}{c}ge frac{2}{ab+bc+ca}.
$$ By C-S, we have
$$
sum_{text{cyc}}frac{a}{b}sum_{text{cyc}}abge left(sum_{text{cyc}}aright)^2 =1,
$$ and
$$
sum_{text{cyc}}frac{a}{c}sum_{text{cyc}}acge left(sum_{text{cyc}}aright)^2 =1.
$$
$endgroup$
add a comment |
$begingroup$
If we arrange
$$
frac{ab+bc+ac}{abc} ge frac{2}{ab+bc+ac} +3
$$ then we have
$$
(ab+bc+ac)^2 =sum_{text{cyc}}a^2b^2 +2abcge abc(2+3(ab+bc+ac))=2abc +3sum_{text{cyc}}a^2b^2c.
$$ We need to show
$$
sum_{text{cyc}}a^2b^2ge 3sum_{text{cyc}}a^2b^2c.
$$ This is equivalent to
$$
sum_{text{cyc}}a^2b^2(a+b+c)ge 3sum_{text{cyc}}a^2b^2c.
$$ By rearrangement, we have
$$
sum_{text{cyc}}a^3b^2ge sum_{text{cyc}}a^2b^2c,
$$and
$$
sum_{text{cyc}}a^2b^3ge sum_{text{cyc}}a^2b^2c.
$$ This proves the inequality.
Another approach: We need to show
$$
sum_{text{cyc}}frac{a}{b}+sum_{text{cyc}}frac{a}{c}ge frac{2}{ab+bc+ca}.
$$ By C-S, we have
$$
sum_{text{cyc}}frac{a}{b}sum_{text{cyc}}abge left(sum_{text{cyc}}aright)^2 =1,
$$ and
$$
sum_{text{cyc}}frac{a}{c}sum_{text{cyc}}acge left(sum_{text{cyc}}aright)^2 =1.
$$
$endgroup$
If we arrange
$$
frac{ab+bc+ac}{abc} ge frac{2}{ab+bc+ac} +3
$$ then we have
$$
(ab+bc+ac)^2 =sum_{text{cyc}}a^2b^2 +2abcge abc(2+3(ab+bc+ac))=2abc +3sum_{text{cyc}}a^2b^2c.
$$ We need to show
$$
sum_{text{cyc}}a^2b^2ge 3sum_{text{cyc}}a^2b^2c.
$$ This is equivalent to
$$
sum_{text{cyc}}a^2b^2(a+b+c)ge 3sum_{text{cyc}}a^2b^2c.
$$ By rearrangement, we have
$$
sum_{text{cyc}}a^3b^2ge sum_{text{cyc}}a^2b^2c,
$$and
$$
sum_{text{cyc}}a^2b^3ge sum_{text{cyc}}a^2b^2c.
$$ This proves the inequality.
Another approach: We need to show
$$
sum_{text{cyc}}frac{a}{b}+sum_{text{cyc}}frac{a}{c}ge frac{2}{ab+bc+ca}.
$$ By C-S, we have
$$
sum_{text{cyc}}frac{a}{b}sum_{text{cyc}}abge left(sum_{text{cyc}}aright)^2 =1,
$$ and
$$
sum_{text{cyc}}frac{a}{c}sum_{text{cyc}}acge left(sum_{text{cyc}}aright)^2 =1.
$$
edited Jan 9 at 17:21
answered Jan 9 at 17:14
SongSong
11.4k628
11.4k628
add a comment |
add a comment |
$begingroup$
Because by C-S
$$(ab+ac+bc)sum_{cyc}frac{a(b+c)}{bc}=sum_{cyc}acsum_{cyc}frac{a}{c}+sum_{cyc}absum_{cyc}frac{a}{b}geq$$
$$geq(a+b+c)^2+(a+b+c)^2=2.$$
$endgroup$
add a comment |
$begingroup$
Because by C-S
$$(ab+ac+bc)sum_{cyc}frac{a(b+c)}{bc}=sum_{cyc}acsum_{cyc}frac{a}{c}+sum_{cyc}absum_{cyc}frac{a}{b}geq$$
$$geq(a+b+c)^2+(a+b+c)^2=2.$$
$endgroup$
add a comment |
$begingroup$
Because by C-S
$$(ab+ac+bc)sum_{cyc}frac{a(b+c)}{bc}=sum_{cyc}acsum_{cyc}frac{a}{c}+sum_{cyc}absum_{cyc}frac{a}{b}geq$$
$$geq(a+b+c)^2+(a+b+c)^2=2.$$
$endgroup$
Because by C-S
$$(ab+ac+bc)sum_{cyc}frac{a(b+c)}{bc}=sum_{cyc}acsum_{cyc}frac{a}{c}+sum_{cyc}absum_{cyc}frac{a}{b}geq$$
$$geq(a+b+c)^2+(a+b+c)^2=2.$$
answered Jan 9 at 22:13
Michael RozenbergMichael Rozenberg
101k1591193
101k1591193
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067665%2finequality-in-3-variables-with-a-constraint-condition%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown