Using nn.ModuleList over Python list dramatically slows down training












0















I'm training a very simple model that takes the number of hidden layers as a parameter. I originally stored these hidden layers in a vanilla python list , however when converting this list to a nn.ModuleList, training slows down dramatically by at least one order of magnitude!



AdderNet



class AdderNet(nn.Module):
def __init__(self, num_hidden, hidden_width):
super(AdderNet, self).__init__()
self.relu = nn.ReLU()

self.hiddenLayers =
self.inputLayer = nn.Linear(2, hidden_width)
self.outputLayer = nn.Linear(hidden_width, 1)

for i in range(num_hidden):
self.hiddenLayers.append(nn.Linear(hidden_width, hidden_width))

self.hiddenLayers = nn.ModuleList(self.hiddenLayers) # <--- causes DRAMATIC slowdown!

def forward(self, x):
out = self.inputLayer(x)
out = self.relu(out)

for layer in self.hiddenLayers:
out = layer(out)
out = self.relu(out)

return self.outputLayer(out)


Training



for epoch in range(num_epochs):
for i in range(0,len(data)):
out = model.forward(data[i].x)
loss = lossFunction(out, data[i].y)

optimizer.zero_grad()
loss.backward()
optimizer.step()









share|improve this question





























    0















    I'm training a very simple model that takes the number of hidden layers as a parameter. I originally stored these hidden layers in a vanilla python list , however when converting this list to a nn.ModuleList, training slows down dramatically by at least one order of magnitude!



    AdderNet



    class AdderNet(nn.Module):
    def __init__(self, num_hidden, hidden_width):
    super(AdderNet, self).__init__()
    self.relu = nn.ReLU()

    self.hiddenLayers =
    self.inputLayer = nn.Linear(2, hidden_width)
    self.outputLayer = nn.Linear(hidden_width, 1)

    for i in range(num_hidden):
    self.hiddenLayers.append(nn.Linear(hidden_width, hidden_width))

    self.hiddenLayers = nn.ModuleList(self.hiddenLayers) # <--- causes DRAMATIC slowdown!

    def forward(self, x):
    out = self.inputLayer(x)
    out = self.relu(out)

    for layer in self.hiddenLayers:
    out = layer(out)
    out = self.relu(out)

    return self.outputLayer(out)


    Training



    for epoch in range(num_epochs):
    for i in range(0,len(data)):
    out = model.forward(data[i].x)
    loss = lossFunction(out, data[i].y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()









    share|improve this question



























      0












      0








      0


      1






      I'm training a very simple model that takes the number of hidden layers as a parameter. I originally stored these hidden layers in a vanilla python list , however when converting this list to a nn.ModuleList, training slows down dramatically by at least one order of magnitude!



      AdderNet



      class AdderNet(nn.Module):
      def __init__(self, num_hidden, hidden_width):
      super(AdderNet, self).__init__()
      self.relu = nn.ReLU()

      self.hiddenLayers =
      self.inputLayer = nn.Linear(2, hidden_width)
      self.outputLayer = nn.Linear(hidden_width, 1)

      for i in range(num_hidden):
      self.hiddenLayers.append(nn.Linear(hidden_width, hidden_width))

      self.hiddenLayers = nn.ModuleList(self.hiddenLayers) # <--- causes DRAMATIC slowdown!

      def forward(self, x):
      out = self.inputLayer(x)
      out = self.relu(out)

      for layer in self.hiddenLayers:
      out = layer(out)
      out = self.relu(out)

      return self.outputLayer(out)


      Training



      for epoch in range(num_epochs):
      for i in range(0,len(data)):
      out = model.forward(data[i].x)
      loss = lossFunction(out, data[i].y)

      optimizer.zero_grad()
      loss.backward()
      optimizer.step()









      share|improve this question
















      I'm training a very simple model that takes the number of hidden layers as a parameter. I originally stored these hidden layers in a vanilla python list , however when converting this list to a nn.ModuleList, training slows down dramatically by at least one order of magnitude!



      AdderNet



      class AdderNet(nn.Module):
      def __init__(self, num_hidden, hidden_width):
      super(AdderNet, self).__init__()
      self.relu = nn.ReLU()

      self.hiddenLayers =
      self.inputLayer = nn.Linear(2, hidden_width)
      self.outputLayer = nn.Linear(hidden_width, 1)

      for i in range(num_hidden):
      self.hiddenLayers.append(nn.Linear(hidden_width, hidden_width))

      self.hiddenLayers = nn.ModuleList(self.hiddenLayers) # <--- causes DRAMATIC slowdown!

      def forward(self, x):
      out = self.inputLayer(x)
      out = self.relu(out)

      for layer in self.hiddenLayers:
      out = layer(out)
      out = self.relu(out)

      return self.outputLayer(out)


      Training



      for epoch in range(num_epochs):
      for i in range(0,len(data)):
      out = model.forward(data[i].x)
      loss = lossFunction(out, data[i].y)

      optimizer.zero_grad()
      loss.backward()
      optimizer.step()






      python neural-network pytorch






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 21 '18 at 5:27









      Milo Lu

      1,61511427




      1,61511427










      asked Nov 21 '18 at 0:52









      Stephen LaskyStephen Lasky

      140112




      140112
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53403812%2fusing-nn-modulelist-over-python-list-dramatically-slows-down-training%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53403812%2fusing-nn-modulelist-over-python-list-dramatically-slows-down-training%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]