How to use log probabilities in PCA mixture EM algorithm












0












$begingroup$


I'm trying to implement PCA mixtures (Tipping & Bishop 2006 Appendix C) on the Tobomovirus. I'll summarize the mathematical background and algorithm here:



For a single PCA model, we assume a latent variable model



$$
mathbf{t} = mathbf{Wx} + boldsymbolmu + boldsymbolepsilon.
$$

This implies a probability distribution
$$
p(mathbf{t}|mathbf{x}) = (2pisigma^2)^{-d/2}mathrm{exp}{-frac{1}{2sigma^2}||mathbf{t} - mathbf{Wx}- boldsymbolmu||^2}
$$

since the noise term $boldsymbolepsilon$ is zero-mean Gaussian with variance $sigma^2$.



We define the Gaussian prior



$$
p(mathbf{x}) = (2pi)^{-q/2}mathrm{exp}{-frac{1}{2}mathbf{x}^Tmathbf{x}}
$$

which allows us to derive the marginal distribution



$$
p(mathbf{t}) = (2pi)^{-d/2}|mathbf{C}|^{-1/2}mathrm{exp}{-frac{1}{2}(mathbf{t} - boldsymbolmu)^Tmathbf{C}^-1(mathbf{t} - boldsymbolmu)}
$$



where $mathbf{C} = sigma^2mathbf{I} + mathbf{WW}^T$.



The PCA mixture model means that we use a mixture of PCA models like this:



$$
p(mathbf{t}) = sum_{i=1}^M pi_i p(mathbf{t}|i).
$$



The algorithm:




  1. Initialize $pi_i$, $boldsymbolmu_i$, $mathbf{W}_i$, $sigma_i^2$. These are the mixing coefficient, mean (of the marginal), weight matrix and variance of each model.

  2. Calculate the responsibilities,


$$
R_{ni} = frac{p(mathbf{t}_n|i)pi_i}{p(mathbf{t}_n)}
$$

where $p(mathbf{t}|i)$ is the probability for a single PCA model $i$.




  1. Calculate mixing coefficients


$$
tildepi_i = frac{1}{N}sum^N_{n=1} R_{ni}.
$$




  1. Calculate the means


$$
tilde{boldsymbolmu}_i = frac{sum_{n=1}^N R_{ni}mathbf{t}_n}{sum_{n=1}^NR_{ni}}
$$




  1. Calculate the new weight matrices


$$
mathbf{tilde W}_i = mathbf{S}_i mathbf{W}_i(sigma^2 mathbf{I}+mathbf{M}^{-1}mathbf{W}_i^Tmathbf{S}_imathbf{W}_i)^{-1}
$$



where $mathbf{S}_i = frac{1}{tildepi_i N}sum^N_{n=1}R_{ni}(mathbf{t}_n - tilde{boldsymbolmu})(mathbf{t}_n - tilde{boldsymbolmu})^T$.




  1. Repeat from step 2.


The tilde operator means that it is a new parameter being calculated.



Here's my problem:
When implementing this on the Tobomovirus dataset, the long 18x1 feature vectors and the resulting 18x18 $mathbf{C}$ matrix lead to the probabilities $p(mathbf{t})$ in step 2 becoming very very small, leading to underflow. I would like to work with the log probabilities instead, but I'm not sure how this will affect the algorithm. Could I just set



$$
R_{ni} = frac{ln(p(mathbf{t}_n|i))pi_i}{ln(p(mathbf{t}))}
$$

in step 2 and then leave the rest of the algorithm unchanged?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I'm trying to implement PCA mixtures (Tipping & Bishop 2006 Appendix C) on the Tobomovirus. I'll summarize the mathematical background and algorithm here:



    For a single PCA model, we assume a latent variable model



    $$
    mathbf{t} = mathbf{Wx} + boldsymbolmu + boldsymbolepsilon.
    $$

    This implies a probability distribution
    $$
    p(mathbf{t}|mathbf{x}) = (2pisigma^2)^{-d/2}mathrm{exp}{-frac{1}{2sigma^2}||mathbf{t} - mathbf{Wx}- boldsymbolmu||^2}
    $$

    since the noise term $boldsymbolepsilon$ is zero-mean Gaussian with variance $sigma^2$.



    We define the Gaussian prior



    $$
    p(mathbf{x}) = (2pi)^{-q/2}mathrm{exp}{-frac{1}{2}mathbf{x}^Tmathbf{x}}
    $$

    which allows us to derive the marginal distribution



    $$
    p(mathbf{t}) = (2pi)^{-d/2}|mathbf{C}|^{-1/2}mathrm{exp}{-frac{1}{2}(mathbf{t} - boldsymbolmu)^Tmathbf{C}^-1(mathbf{t} - boldsymbolmu)}
    $$



    where $mathbf{C} = sigma^2mathbf{I} + mathbf{WW}^T$.



    The PCA mixture model means that we use a mixture of PCA models like this:



    $$
    p(mathbf{t}) = sum_{i=1}^M pi_i p(mathbf{t}|i).
    $$



    The algorithm:




    1. Initialize $pi_i$, $boldsymbolmu_i$, $mathbf{W}_i$, $sigma_i^2$. These are the mixing coefficient, mean (of the marginal), weight matrix and variance of each model.

    2. Calculate the responsibilities,


    $$
    R_{ni} = frac{p(mathbf{t}_n|i)pi_i}{p(mathbf{t}_n)}
    $$

    where $p(mathbf{t}|i)$ is the probability for a single PCA model $i$.




    1. Calculate mixing coefficients


    $$
    tildepi_i = frac{1}{N}sum^N_{n=1} R_{ni}.
    $$




    1. Calculate the means


    $$
    tilde{boldsymbolmu}_i = frac{sum_{n=1}^N R_{ni}mathbf{t}_n}{sum_{n=1}^NR_{ni}}
    $$




    1. Calculate the new weight matrices


    $$
    mathbf{tilde W}_i = mathbf{S}_i mathbf{W}_i(sigma^2 mathbf{I}+mathbf{M}^{-1}mathbf{W}_i^Tmathbf{S}_imathbf{W}_i)^{-1}
    $$



    where $mathbf{S}_i = frac{1}{tildepi_i N}sum^N_{n=1}R_{ni}(mathbf{t}_n - tilde{boldsymbolmu})(mathbf{t}_n - tilde{boldsymbolmu})^T$.




    1. Repeat from step 2.


    The tilde operator means that it is a new parameter being calculated.



    Here's my problem:
    When implementing this on the Tobomovirus dataset, the long 18x1 feature vectors and the resulting 18x18 $mathbf{C}$ matrix lead to the probabilities $p(mathbf{t})$ in step 2 becoming very very small, leading to underflow. I would like to work with the log probabilities instead, but I'm not sure how this will affect the algorithm. Could I just set



    $$
    R_{ni} = frac{ln(p(mathbf{t}_n|i))pi_i}{ln(p(mathbf{t}))}
    $$

    in step 2 and then leave the rest of the algorithm unchanged?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I'm trying to implement PCA mixtures (Tipping & Bishop 2006 Appendix C) on the Tobomovirus. I'll summarize the mathematical background and algorithm here:



      For a single PCA model, we assume a latent variable model



      $$
      mathbf{t} = mathbf{Wx} + boldsymbolmu + boldsymbolepsilon.
      $$

      This implies a probability distribution
      $$
      p(mathbf{t}|mathbf{x}) = (2pisigma^2)^{-d/2}mathrm{exp}{-frac{1}{2sigma^2}||mathbf{t} - mathbf{Wx}- boldsymbolmu||^2}
      $$

      since the noise term $boldsymbolepsilon$ is zero-mean Gaussian with variance $sigma^2$.



      We define the Gaussian prior



      $$
      p(mathbf{x}) = (2pi)^{-q/2}mathrm{exp}{-frac{1}{2}mathbf{x}^Tmathbf{x}}
      $$

      which allows us to derive the marginal distribution



      $$
      p(mathbf{t}) = (2pi)^{-d/2}|mathbf{C}|^{-1/2}mathrm{exp}{-frac{1}{2}(mathbf{t} - boldsymbolmu)^Tmathbf{C}^-1(mathbf{t} - boldsymbolmu)}
      $$



      where $mathbf{C} = sigma^2mathbf{I} + mathbf{WW}^T$.



      The PCA mixture model means that we use a mixture of PCA models like this:



      $$
      p(mathbf{t}) = sum_{i=1}^M pi_i p(mathbf{t}|i).
      $$



      The algorithm:




      1. Initialize $pi_i$, $boldsymbolmu_i$, $mathbf{W}_i$, $sigma_i^2$. These are the mixing coefficient, mean (of the marginal), weight matrix and variance of each model.

      2. Calculate the responsibilities,


      $$
      R_{ni} = frac{p(mathbf{t}_n|i)pi_i}{p(mathbf{t}_n)}
      $$

      where $p(mathbf{t}|i)$ is the probability for a single PCA model $i$.




      1. Calculate mixing coefficients


      $$
      tildepi_i = frac{1}{N}sum^N_{n=1} R_{ni}.
      $$




      1. Calculate the means


      $$
      tilde{boldsymbolmu}_i = frac{sum_{n=1}^N R_{ni}mathbf{t}_n}{sum_{n=1}^NR_{ni}}
      $$




      1. Calculate the new weight matrices


      $$
      mathbf{tilde W}_i = mathbf{S}_i mathbf{W}_i(sigma^2 mathbf{I}+mathbf{M}^{-1}mathbf{W}_i^Tmathbf{S}_imathbf{W}_i)^{-1}
      $$



      where $mathbf{S}_i = frac{1}{tildepi_i N}sum^N_{n=1}R_{ni}(mathbf{t}_n - tilde{boldsymbolmu})(mathbf{t}_n - tilde{boldsymbolmu})^T$.




      1. Repeat from step 2.


      The tilde operator means that it is a new parameter being calculated.



      Here's my problem:
      When implementing this on the Tobomovirus dataset, the long 18x1 feature vectors and the resulting 18x18 $mathbf{C}$ matrix lead to the probabilities $p(mathbf{t})$ in step 2 becoming very very small, leading to underflow. I would like to work with the log probabilities instead, but I'm not sure how this will affect the algorithm. Could I just set



      $$
      R_{ni} = frac{ln(p(mathbf{t}_n|i))pi_i}{ln(p(mathbf{t}))}
      $$

      in step 2 and then leave the rest of the algorithm unchanged?










      share|cite|improve this question











      $endgroup$




      I'm trying to implement PCA mixtures (Tipping & Bishop 2006 Appendix C) on the Tobomovirus. I'll summarize the mathematical background and algorithm here:



      For a single PCA model, we assume a latent variable model



      $$
      mathbf{t} = mathbf{Wx} + boldsymbolmu + boldsymbolepsilon.
      $$

      This implies a probability distribution
      $$
      p(mathbf{t}|mathbf{x}) = (2pisigma^2)^{-d/2}mathrm{exp}{-frac{1}{2sigma^2}||mathbf{t} - mathbf{Wx}- boldsymbolmu||^2}
      $$

      since the noise term $boldsymbolepsilon$ is zero-mean Gaussian with variance $sigma^2$.



      We define the Gaussian prior



      $$
      p(mathbf{x}) = (2pi)^{-q/2}mathrm{exp}{-frac{1}{2}mathbf{x}^Tmathbf{x}}
      $$

      which allows us to derive the marginal distribution



      $$
      p(mathbf{t}) = (2pi)^{-d/2}|mathbf{C}|^{-1/2}mathrm{exp}{-frac{1}{2}(mathbf{t} - boldsymbolmu)^Tmathbf{C}^-1(mathbf{t} - boldsymbolmu)}
      $$



      where $mathbf{C} = sigma^2mathbf{I} + mathbf{WW}^T$.



      The PCA mixture model means that we use a mixture of PCA models like this:



      $$
      p(mathbf{t}) = sum_{i=1}^M pi_i p(mathbf{t}|i).
      $$



      The algorithm:




      1. Initialize $pi_i$, $boldsymbolmu_i$, $mathbf{W}_i$, $sigma_i^2$. These are the mixing coefficient, mean (of the marginal), weight matrix and variance of each model.

      2. Calculate the responsibilities,


      $$
      R_{ni} = frac{p(mathbf{t}_n|i)pi_i}{p(mathbf{t}_n)}
      $$

      where $p(mathbf{t}|i)$ is the probability for a single PCA model $i$.




      1. Calculate mixing coefficients


      $$
      tildepi_i = frac{1}{N}sum^N_{n=1} R_{ni}.
      $$




      1. Calculate the means


      $$
      tilde{boldsymbolmu}_i = frac{sum_{n=1}^N R_{ni}mathbf{t}_n}{sum_{n=1}^NR_{ni}}
      $$




      1. Calculate the new weight matrices


      $$
      mathbf{tilde W}_i = mathbf{S}_i mathbf{W}_i(sigma^2 mathbf{I}+mathbf{M}^{-1}mathbf{W}_i^Tmathbf{S}_imathbf{W}_i)^{-1}
      $$



      where $mathbf{S}_i = frac{1}{tildepi_i N}sum^N_{n=1}R_{ni}(mathbf{t}_n - tilde{boldsymbolmu})(mathbf{t}_n - tilde{boldsymbolmu})^T$.




      1. Repeat from step 2.


      The tilde operator means that it is a new parameter being calculated.



      Here's my problem:
      When implementing this on the Tobomovirus dataset, the long 18x1 feature vectors and the resulting 18x18 $mathbf{C}$ matrix lead to the probabilities $p(mathbf{t})$ in step 2 becoming very very small, leading to underflow. I would like to work with the log probabilities instead, but I'm not sure how this will affect the algorithm. Could I just set



      $$
      R_{ni} = frac{ln(p(mathbf{t}_n|i))pi_i}{ln(p(mathbf{t}))}
      $$

      in step 2 and then leave the rest of the algorithm unchanged?







      probability-theory machine-learning






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 10 at 0:38







      Sandi

















      asked Jan 9 at 16:55









      SandiSandi

      255112




      255112






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067693%2fhow-to-use-log-probabilities-in-pca-mixture-em-algorithm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067693%2fhow-to-use-log-probabilities-in-pca-mixture-em-algorithm%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]