What is the limit of $phi_{t_k}(x_k,y_k) = 1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$ when $y_k...












0












$begingroup$


Let ${x_k in [-1,1]} downarrow 0$, ${y_k in [0,1]} downarrow 0$ and ${t_k gt 0 } downarrow 0$ be sequences which satisfy the equality $y_k sqrt{x_k^2 + t_k^2} = t_k$. Now let $$phi_t(x,y) = 1 - frac{y}{sqrt{x^2 + y^2 + 2t + t^2}}$$
I want to show that $lim_{k to infty} phi_{t_k}(x_k,y_k) neq 0$. I do not know this is true for sure. My attempt so far has been to show that $lim_{k to infty} frac{y_k^2}{{x_k^2 + y_k^2 + 2t_k + t_k^2}} neq 1$ using the relation that $y_k^2 =frac{t_k^2}{x_k^2 + t_k^2}$ but I am still unable to come up with a way to show that the limit is not 0. If someone has any ideas or proofs for this I would be very thankful. Ideally, if someone knows what the exact limit of $phi_{t_k}(x_k,y_k)$ is that would also be great.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 18:25
















0












$begingroup$


Let ${x_k in [-1,1]} downarrow 0$, ${y_k in [0,1]} downarrow 0$ and ${t_k gt 0 } downarrow 0$ be sequences which satisfy the equality $y_k sqrt{x_k^2 + t_k^2} = t_k$. Now let $$phi_t(x,y) = 1 - frac{y}{sqrt{x^2 + y^2 + 2t + t^2}}$$
I want to show that $lim_{k to infty} phi_{t_k}(x_k,y_k) neq 0$. I do not know this is true for sure. My attempt so far has been to show that $lim_{k to infty} frac{y_k^2}{{x_k^2 + y_k^2 + 2t_k + t_k^2}} neq 1$ using the relation that $y_k^2 =frac{t_k^2}{x_k^2 + t_k^2}$ but I am still unable to come up with a way to show that the limit is not 0. If someone has any ideas or proofs for this I would be very thankful. Ideally, if someone knows what the exact limit of $phi_{t_k}(x_k,y_k)$ is that would also be great.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 18:25














0












0








0





$begingroup$


Let ${x_k in [-1,1]} downarrow 0$, ${y_k in [0,1]} downarrow 0$ and ${t_k gt 0 } downarrow 0$ be sequences which satisfy the equality $y_k sqrt{x_k^2 + t_k^2} = t_k$. Now let $$phi_t(x,y) = 1 - frac{y}{sqrt{x^2 + y^2 + 2t + t^2}}$$
I want to show that $lim_{k to infty} phi_{t_k}(x_k,y_k) neq 0$. I do not know this is true for sure. My attempt so far has been to show that $lim_{k to infty} frac{y_k^2}{{x_k^2 + y_k^2 + 2t_k + t_k^2}} neq 1$ using the relation that $y_k^2 =frac{t_k^2}{x_k^2 + t_k^2}$ but I am still unable to come up with a way to show that the limit is not 0. If someone has any ideas or proofs for this I would be very thankful. Ideally, if someone knows what the exact limit of $phi_{t_k}(x_k,y_k)$ is that would also be great.










share|cite|improve this question









$endgroup$




Let ${x_k in [-1,1]} downarrow 0$, ${y_k in [0,1]} downarrow 0$ and ${t_k gt 0 } downarrow 0$ be sequences which satisfy the equality $y_k sqrt{x_k^2 + t_k^2} = t_k$. Now let $$phi_t(x,y) = 1 - frac{y}{sqrt{x^2 + y^2 + 2t + t^2}}$$
I want to show that $lim_{k to infty} phi_{t_k}(x_k,y_k) neq 0$. I do not know this is true for sure. My attempt so far has been to show that $lim_{k to infty} frac{y_k^2}{{x_k^2 + y_k^2 + 2t_k + t_k^2}} neq 1$ using the relation that $y_k^2 =frac{t_k^2}{x_k^2 + t_k^2}$ but I am still unable to come up with a way to show that the limit is not 0. If someone has any ideas or proofs for this I would be very thankful. Ideally, if someone knows what the exact limit of $phi_{t_k}(x_k,y_k)$ is that would also be great.







sequences-and-series limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 9 at 16:27









geo17geo17

967




967












  • $begingroup$
    Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 18:25


















  • $begingroup$
    Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 18:25
















$begingroup$
Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
$endgroup$
– Mostafa Ayaz
Jan 9 at 18:25




$begingroup$
Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
$endgroup$
– Mostafa Ayaz
Jan 9 at 18:25










1 Answer
1






active

oldest

votes


















0












$begingroup$

First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    wow, thanks so much for providing this counter-example!
    $endgroup$
    – geo17
    Jan 9 at 20:50










  • $begingroup$
    ur welcome. Wish you luck!
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 20:53











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067656%2fwhat-is-the-limit-of-phi-t-kx-k-y-k-1-fracy-k-sqrtx-k2-y-k2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    wow, thanks so much for providing this counter-example!
    $endgroup$
    – geo17
    Jan 9 at 20:50










  • $begingroup$
    ur welcome. Wish you luck!
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 20:53
















0












$begingroup$

First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    wow, thanks so much for providing this counter-example!
    $endgroup$
    – geo17
    Jan 9 at 20:50










  • $begingroup$
    ur welcome. Wish you luck!
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 20:53














0












0








0





$begingroup$

First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$






share|cite|improve this answer









$endgroup$



First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 9 at 19:58









Mostafa AyazMostafa Ayaz

15.5k3939




15.5k3939












  • $begingroup$
    wow, thanks so much for providing this counter-example!
    $endgroup$
    – geo17
    Jan 9 at 20:50










  • $begingroup$
    ur welcome. Wish you luck!
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 20:53


















  • $begingroup$
    wow, thanks so much for providing this counter-example!
    $endgroup$
    – geo17
    Jan 9 at 20:50










  • $begingroup$
    ur welcome. Wish you luck!
    $endgroup$
    – Mostafa Ayaz
    Jan 9 at 20:53
















$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50




$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50












$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53




$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067656%2fwhat-is-the-limit-of-phi-t-kx-k-y-k-1-fracy-k-sqrtx-k2-y-k2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

A Topological Invariant for $pi_3(U(n))$