What is the limit of $phi_{t_k}(x_k,y_k) = 1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$ when $y_k...
$begingroup$
Let ${x_k in [-1,1]} downarrow 0$, ${y_k in [0,1]} downarrow 0$ and ${t_k gt 0 } downarrow 0$ be sequences which satisfy the equality $y_k sqrt{x_k^2 + t_k^2} = t_k$. Now let $$phi_t(x,y) = 1 - frac{y}{sqrt{x^2 + y^2 + 2t + t^2}}$$
I want to show that $lim_{k to infty} phi_{t_k}(x_k,y_k) neq 0$. I do not know this is true for sure. My attempt so far has been to show that $lim_{k to infty} frac{y_k^2}{{x_k^2 + y_k^2 + 2t_k + t_k^2}} neq 1$ using the relation that $y_k^2 =frac{t_k^2}{x_k^2 + t_k^2}$ but I am still unable to come up with a way to show that the limit is not 0. If someone has any ideas or proofs for this I would be very thankful. Ideally, if someone knows what the exact limit of $phi_{t_k}(x_k,y_k)$ is that would also be great.
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
Let ${x_k in [-1,1]} downarrow 0$, ${y_k in [0,1]} downarrow 0$ and ${t_k gt 0 } downarrow 0$ be sequences which satisfy the equality $y_k sqrt{x_k^2 + t_k^2} = t_k$. Now let $$phi_t(x,y) = 1 - frac{y}{sqrt{x^2 + y^2 + 2t + t^2}}$$
I want to show that $lim_{k to infty} phi_{t_k}(x_k,y_k) neq 0$. I do not know this is true for sure. My attempt so far has been to show that $lim_{k to infty} frac{y_k^2}{{x_k^2 + y_k^2 + 2t_k + t_k^2}} neq 1$ using the relation that $y_k^2 =frac{t_k^2}{x_k^2 + t_k^2}$ but I am still unable to come up with a way to show that the limit is not 0. If someone has any ideas or proofs for this I would be very thankful. Ideally, if someone knows what the exact limit of $phi_{t_k}(x_k,y_k)$ is that would also be great.
sequences-and-series limits
$endgroup$
$begingroup$
Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
$endgroup$
– Mostafa Ayaz
Jan 9 at 18:25
add a comment |
$begingroup$
Let ${x_k in [-1,1]} downarrow 0$, ${y_k in [0,1]} downarrow 0$ and ${t_k gt 0 } downarrow 0$ be sequences which satisfy the equality $y_k sqrt{x_k^2 + t_k^2} = t_k$. Now let $$phi_t(x,y) = 1 - frac{y}{sqrt{x^2 + y^2 + 2t + t^2}}$$
I want to show that $lim_{k to infty} phi_{t_k}(x_k,y_k) neq 0$. I do not know this is true for sure. My attempt so far has been to show that $lim_{k to infty} frac{y_k^2}{{x_k^2 + y_k^2 + 2t_k + t_k^2}} neq 1$ using the relation that $y_k^2 =frac{t_k^2}{x_k^2 + t_k^2}$ but I am still unable to come up with a way to show that the limit is not 0. If someone has any ideas or proofs for this I would be very thankful. Ideally, if someone knows what the exact limit of $phi_{t_k}(x_k,y_k)$ is that would also be great.
sequences-and-series limits
$endgroup$
Let ${x_k in [-1,1]} downarrow 0$, ${y_k in [0,1]} downarrow 0$ and ${t_k gt 0 } downarrow 0$ be sequences which satisfy the equality $y_k sqrt{x_k^2 + t_k^2} = t_k$. Now let $$phi_t(x,y) = 1 - frac{y}{sqrt{x^2 + y^2 + 2t + t^2}}$$
I want to show that $lim_{k to infty} phi_{t_k}(x_k,y_k) neq 0$. I do not know this is true for sure. My attempt so far has been to show that $lim_{k to infty} frac{y_k^2}{{x_k^2 + y_k^2 + 2t_k + t_k^2}} neq 1$ using the relation that $y_k^2 =frac{t_k^2}{x_k^2 + t_k^2}$ but I am still unable to come up with a way to show that the limit is not 0. If someone has any ideas or proofs for this I would be very thankful. Ideally, if someone knows what the exact limit of $phi_{t_k}(x_k,y_k)$ is that would also be great.
sequences-and-series limits
sequences-and-series limits
asked Jan 9 at 16:27
geo17geo17
967
967
$begingroup$
Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
$endgroup$
– Mostafa Ayaz
Jan 9 at 18:25
add a comment |
$begingroup$
Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
$endgroup$
– Mostafa Ayaz
Jan 9 at 18:25
$begingroup$
Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
$endgroup$
– Mostafa Ayaz
Jan 9 at 18:25
$begingroup$
Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
$endgroup$
– Mostafa Ayaz
Jan 9 at 18:25
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$
$endgroup$
$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50
$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067656%2fwhat-is-the-limit-of-phi-t-kx-k-y-k-1-fracy-k-sqrtx-k2-y-k2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$
$endgroup$
$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50
$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53
add a comment |
$begingroup$
First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$
$endgroup$
$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50
$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53
add a comment |
$begingroup$
First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$
$endgroup$
First we have $$phi_{t_k}(x_k,y_k)=1 - frac{y_k}{sqrt{x_k^2 + y_k^2 + 2t_k + t_k^2}}$$by substitution from $y_ksqrt{x_k^2+t_k^2}=t_k$ assuming $y_kne 0$ (if $y_k=0$ then $phi_{t_k}(x_k,y_k)=1$) we obtain $$phi_{t_k}(x_k,y_k){=1 - frac{y_k}{sqrt{y_k^2 + 2t_k + {t_k^2over y_k^2}}}\=1-{1over sqrt{1+{2t_kover y_k^2}+{t_k^2over y_k^4}}}}$$by defining $a_k={t_kover y_k^2}ge0$ we finally conclude that $$phi_{t_k}(x_k,y_k){=1-{1over sqrt{1+2a_k+a_k^2}}\=1-{1over sqrt{(1+a_k)^2}}\=1-{1over 1+a_k}\={a_kover 1+a_k}}$$therefore $$lim_{kto infty}phi_{t_k}(x_k,y_k)=lim_{kto infty}{a_kover 1+a_k}$$To proceed further we need an extra assumption $$lim_{kto infty}{t_kover y_k^2}$$unless lots of counter examples will drive out. As an example$$x_k={1over k^3}\y_k={1over k}$$therefore $$t_k={1over k}sqrt{t_k^2+{1over k^6}}$$from which we obtain $$t_k={1over k^3sqrt{k^2-1}}$$and we have $$lim_{ktoinfty}phi_{t_k}(x_k,y_k){=lim_{ktoinfty}1-{1over ksqrt{{1over k^6}+{1over k^2}+{2over k^3sqrt{k^2-1}}+{1over k^6(k^2-1)}}}\=lim_{ktoinfty}1-{1over sqrt{{1over k^4}+{1}+{2over ksqrt{k^2-1}}+{1over k^4(k^2-1)}}}\=0}$$
answered Jan 9 at 19:58
Mostafa AyazMostafa Ayaz
15.5k3939
15.5k3939
$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50
$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53
add a comment |
$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50
$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53
$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50
$begingroup$
wow, thanks so much for providing this counter-example!
$endgroup$
– geo17
Jan 9 at 20:50
$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53
$begingroup$
ur welcome. Wish you luck!
$endgroup$
– Mostafa Ayaz
Jan 9 at 20:53
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067656%2fwhat-is-the-limit-of-phi-t-kx-k-y-k-1-fracy-k-sqrtx-k2-y-k2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Counter example $$x_k={1over k^3}\y_k={1over k}\t_k={1over k^3sqrt{k^2-1}}$$ for $kne 1$ and $t_1=0.1$.
$endgroup$
– Mostafa Ayaz
Jan 9 at 18:25