Conjecture: $sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi$
$begingroup$
This question came from this $page$.
Given: $$sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi=F(g)tag1$$
where $gge0$ are whole numbers and $k=1,2$ and $3$
Conjecture:$$lim_{g to infty}frac{A_g}{B_g}=frac{4pi}{2^{k}}tag2$$
Examples: $k=1$ and $g=4$
$$f(4)=A_4+B_4pi=frac{32}{3}+frac{238}{81sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx2pi,$$ $$frac{32}{3}divfrac{238}{81sqrt{3}}approx6.2877...(2pi=6.2831...)$$
Examples: $k=2$ and $g=4$
$$f(4)=A_4+B_4pi=355+113pi$$ then $$frac{A_4}{b_4}approx pi,$$ $$355div113approx3.14159292...(pi=3.141592654)$$
Examples: $k=3$ and $g=4$
$$f(4)=A_4+B_4pi=29496+frac{32524}{sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx frac{pi}{2},$$ $$29496divfrac{32524}{sqrt{3}}approx1.57079...(frac{pi}{2}=1.570796327...)$$
Does this conjecture $(2)$ hold?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
This question came from this $page$.
Given: $$sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi=F(g)tag1$$
where $gge0$ are whole numbers and $k=1,2$ and $3$
Conjecture:$$lim_{g to infty}frac{A_g}{B_g}=frac{4pi}{2^{k}}tag2$$
Examples: $k=1$ and $g=4$
$$f(4)=A_4+B_4pi=frac{32}{3}+frac{238}{81sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx2pi,$$ $$frac{32}{3}divfrac{238}{81sqrt{3}}approx6.2877...(2pi=6.2831...)$$
Examples: $k=2$ and $g=4$
$$f(4)=A_4+B_4pi=355+113pi$$ then $$frac{A_4}{b_4}approx pi,$$ $$355div113approx3.14159292...(pi=3.141592654)$$
Examples: $k=3$ and $g=4$
$$f(4)=A_4+B_4pi=29496+frac{32524}{sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx frac{pi}{2},$$ $$29496divfrac{32524}{sqrt{3}}approx1.57079...(frac{pi}{2}=1.570796327...)$$
Does this conjecture $(2)$ hold?
sequences-and-series
$endgroup$
7
$begingroup$
The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
$endgroup$
– Robert Israel
Jan 17 at 17:28
add a comment |
$begingroup$
This question came from this $page$.
Given: $$sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi=F(g)tag1$$
where $gge0$ are whole numbers and $k=1,2$ and $3$
Conjecture:$$lim_{g to infty}frac{A_g}{B_g}=frac{4pi}{2^{k}}tag2$$
Examples: $k=1$ and $g=4$
$$f(4)=A_4+B_4pi=frac{32}{3}+frac{238}{81sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx2pi,$$ $$frac{32}{3}divfrac{238}{81sqrt{3}}approx6.2877...(2pi=6.2831...)$$
Examples: $k=2$ and $g=4$
$$f(4)=A_4+B_4pi=355+113pi$$ then $$frac{A_4}{b_4}approx pi,$$ $$355div113approx3.14159292...(pi=3.141592654)$$
Examples: $k=3$ and $g=4$
$$f(4)=A_4+B_4pi=29496+frac{32524}{sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx frac{pi}{2},$$ $$29496divfrac{32524}{sqrt{3}}approx1.57079...(frac{pi}{2}=1.570796327...)$$
Does this conjecture $(2)$ hold?
sequences-and-series
$endgroup$
This question came from this $page$.
Given: $$sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi=F(g)tag1$$
where $gge0$ are whole numbers and $k=1,2$ and $3$
Conjecture:$$lim_{g to infty}frac{A_g}{B_g}=frac{4pi}{2^{k}}tag2$$
Examples: $k=1$ and $g=4$
$$f(4)=A_4+B_4pi=frac{32}{3}+frac{238}{81sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx2pi,$$ $$frac{32}{3}divfrac{238}{81sqrt{3}}approx6.2877...(2pi=6.2831...)$$
Examples: $k=2$ and $g=4$
$$f(4)=A_4+B_4pi=355+113pi$$ then $$frac{A_4}{b_4}approx pi,$$ $$355div113approx3.14159292...(pi=3.141592654)$$
Examples: $k=3$ and $g=4$
$$f(4)=A_4+B_4pi=29496+frac{32524}{sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx frac{pi}{2},$$ $$29496divfrac{32524}{sqrt{3}}approx1.57079...(frac{pi}{2}=1.570796327...)$$
Does this conjecture $(2)$ hold?
sequences-and-series
sequences-and-series
asked Jan 17 at 16:29


user583851user583851
1
1
7
$begingroup$
The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
$endgroup$
– Robert Israel
Jan 17 at 17:28
add a comment |
7
$begingroup$
The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
$endgroup$
– Robert Israel
Jan 17 at 17:28
7
7
$begingroup$
The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
$endgroup$
– Robert Israel
Jan 17 at 17:28
$begingroup$
The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
$endgroup$
– Robert Israel
Jan 17 at 17:28
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This is not a solution, but maybe a start.
In the case $g=0$, Maple says that for $0 le k < 4$,
$$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.
Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
your sum
$$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$
This has exponential generating function
$$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$
Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
$$
4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
left( 4-k right) ^{5}}}
$$
In general it looks like we'll have
$$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
$$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077201%2fconjecture-sum-n-0-infty-frackn2n-choose-n-cdot-ng-a-gb-g-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This is not a solution, but maybe a start.
In the case $g=0$, Maple says that for $0 le k < 4$,
$$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.
Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
your sum
$$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$
This has exponential generating function
$$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$
Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
$$
4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
left( 4-k right) ^{5}}}
$$
In general it looks like we'll have
$$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
$$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$
$endgroup$
add a comment |
$begingroup$
This is not a solution, but maybe a start.
In the case $g=0$, Maple says that for $0 le k < 4$,
$$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.
Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
your sum
$$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$
This has exponential generating function
$$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$
Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
$$
4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
left( 4-k right) ^{5}}}
$$
In general it looks like we'll have
$$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
$$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$
$endgroup$
add a comment |
$begingroup$
This is not a solution, but maybe a start.
In the case $g=0$, Maple says that for $0 le k < 4$,
$$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.
Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
your sum
$$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$
This has exponential generating function
$$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$
Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
$$
4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
left( 4-k right) ^{5}}}
$$
In general it looks like we'll have
$$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
$$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$
$endgroup$
This is not a solution, but maybe a start.
In the case $g=0$, Maple says that for $0 le k < 4$,
$$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.
Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
your sum
$$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$
This has exponential generating function
$$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$
Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
$$
4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
left( 4-k right) ^{5}}}
$$
In general it looks like we'll have
$$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
$$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$
edited Jan 17 at 18:50
answered Jan 17 at 18:16
Robert IsraelRobert Israel
325k23214468
325k23214468
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077201%2fconjecture-sum-n-0-infty-frackn2n-choose-n-cdot-ng-a-gb-g-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
7
$begingroup$
The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
$endgroup$
– Robert Israel
Jan 17 at 17:28