Conjecture: $sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi$












0












$begingroup$


This question came from this $page$.



Given: $$sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi=F(g)tag1$$



where $gge0$ are whole numbers and $k=1,2$ and $3$



Conjecture:$$lim_{g to infty}frac{A_g}{B_g}=frac{4pi}{2^{k}}tag2$$



Examples: $k=1$ and $g=4$



$$f(4)=A_4+B_4pi=frac{32}{3}+frac{238}{81sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx2pi,$$ $$frac{32}{3}divfrac{238}{81sqrt{3}}approx6.2877...(2pi=6.2831...)$$



Examples: $k=2$ and $g=4$



$$f(4)=A_4+B_4pi=355+113pi$$ then $$frac{A_4}{b_4}approx pi,$$ $$355div113approx3.14159292...(pi=3.141592654)$$



Examples: $k=3$ and $g=4$



$$f(4)=A_4+B_4pi=29496+frac{32524}{sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx frac{pi}{2},$$ $$29496divfrac{32524}{sqrt{3}}approx1.57079...(frac{pi}{2}=1.570796327...)$$



Does this conjecture $(2)$ hold?










share|cite|improve this question









$endgroup$








  • 7




    $begingroup$
    The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
    $endgroup$
    – Robert Israel
    Jan 17 at 17:28
















0












$begingroup$


This question came from this $page$.



Given: $$sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi=F(g)tag1$$



where $gge0$ are whole numbers and $k=1,2$ and $3$



Conjecture:$$lim_{g to infty}frac{A_g}{B_g}=frac{4pi}{2^{k}}tag2$$



Examples: $k=1$ and $g=4$



$$f(4)=A_4+B_4pi=frac{32}{3}+frac{238}{81sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx2pi,$$ $$frac{32}{3}divfrac{238}{81sqrt{3}}approx6.2877...(2pi=6.2831...)$$



Examples: $k=2$ and $g=4$



$$f(4)=A_4+B_4pi=355+113pi$$ then $$frac{A_4}{b_4}approx pi,$$ $$355div113approx3.14159292...(pi=3.141592654)$$



Examples: $k=3$ and $g=4$



$$f(4)=A_4+B_4pi=29496+frac{32524}{sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx frac{pi}{2},$$ $$29496divfrac{32524}{sqrt{3}}approx1.57079...(frac{pi}{2}=1.570796327...)$$



Does this conjecture $(2)$ hold?










share|cite|improve this question









$endgroup$








  • 7




    $begingroup$
    The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
    $endgroup$
    – Robert Israel
    Jan 17 at 17:28














0












0








0


1



$begingroup$


This question came from this $page$.



Given: $$sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi=F(g)tag1$$



where $gge0$ are whole numbers and $k=1,2$ and $3$



Conjecture:$$lim_{g to infty}frac{A_g}{B_g}=frac{4pi}{2^{k}}tag2$$



Examples: $k=1$ and $g=4$



$$f(4)=A_4+B_4pi=frac{32}{3}+frac{238}{81sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx2pi,$$ $$frac{32}{3}divfrac{238}{81sqrt{3}}approx6.2877...(2pi=6.2831...)$$



Examples: $k=2$ and $g=4$



$$f(4)=A_4+B_4pi=355+113pi$$ then $$frac{A_4}{b_4}approx pi,$$ $$355div113approx3.14159292...(pi=3.141592654)$$



Examples: $k=3$ and $g=4$



$$f(4)=A_4+B_4pi=29496+frac{32524}{sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx frac{pi}{2},$$ $$29496divfrac{32524}{sqrt{3}}approx1.57079...(frac{pi}{2}=1.570796327...)$$



Does this conjecture $(2)$ hold?










share|cite|improve this question









$endgroup$




This question came from this $page$.



Given: $$sum_{n=0}^{infty}frac{k^n}{{2n choose n}}cdot n^g=A_g+B_gpi=F(g)tag1$$



where $gge0$ are whole numbers and $k=1,2$ and $3$



Conjecture:$$lim_{g to infty}frac{A_g}{B_g}=frac{4pi}{2^{k}}tag2$$



Examples: $k=1$ and $g=4$



$$f(4)=A_4+B_4pi=frac{32}{3}+frac{238}{81sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx2pi,$$ $$frac{32}{3}divfrac{238}{81sqrt{3}}approx6.2877...(2pi=6.2831...)$$



Examples: $k=2$ and $g=4$



$$f(4)=A_4+B_4pi=355+113pi$$ then $$frac{A_4}{b_4}approx pi,$$ $$355div113approx3.14159292...(pi=3.141592654)$$



Examples: $k=3$ and $g=4$



$$f(4)=A_4+B_4pi=29496+frac{32524}{sqrt{3}}pi$$ then $$frac{A_4}{b_4}approx frac{pi}{2},$$ $$29496divfrac{32524}{sqrt{3}}approx1.57079...(frac{pi}{2}=1.570796327...)$$



Does this conjecture $(2)$ hold?







sequences-and-series






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 17 at 16:29









user583851user583851

1




1








  • 7




    $begingroup$
    The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
    $endgroup$
    – Robert Israel
    Jan 17 at 17:28














  • 7




    $begingroup$
    The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
    $endgroup$
    – Robert Israel
    Jan 17 at 17:28








7




7




$begingroup$
The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
$endgroup$
– Robert Israel
Jan 17 at 17:28




$begingroup$
The page you referenced suggests that the case $k=2$ is worth a PhD thesis. You expect us to write that thesis?
$endgroup$
– Robert Israel
Jan 17 at 17:28










1 Answer
1






active

oldest

votes


















1












$begingroup$

This is not a solution, but maybe a start.



In the case $g=0$, Maple says that for $0 le k < 4$,
$$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.



Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
your sum
$$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$



This has exponential generating function
$$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$



Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
$$
4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
left( 4-k right) ^{5}}}
$$

In general it looks like we'll have
$$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
$$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077201%2fconjecture-sum-n-0-infty-frackn2n-choose-n-cdot-ng-a-gb-g-pi%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    This is not a solution, but maybe a start.



    In the case $g=0$, Maple says that for $0 le k < 4$,
    $$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
    Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.



    Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
    your sum
    $$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$



    This has exponential generating function
    $$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$



    Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
    $$
    4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
    right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
    ^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
    left( 4-k right) ^{5}}}
    $$

    In general it looks like we'll have
    $$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
    for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
    $$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
    Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      This is not a solution, but maybe a start.



      In the case $g=0$, Maple says that for $0 le k < 4$,
      $$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
      Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.



      Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
      your sum
      $$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$



      This has exponential generating function
      $$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$



      Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
      $$
      4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
      right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
      ^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
      left( 4-k right) ^{5}}}
      $$

      In general it looks like we'll have
      $$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
      for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
      $$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
      Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        This is not a solution, but maybe a start.



        In the case $g=0$, Maple says that for $0 le k < 4$,
        $$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
        Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.



        Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
        your sum
        $$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$



        This has exponential generating function
        $$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$



        Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
        $$
        4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
        right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
        ^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
        left( 4-k right) ^{5}}}
        $$

        In general it looks like we'll have
        $$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
        for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
        $$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
        Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$






        share|cite|improve this answer











        $endgroup$



        This is not a solution, but maybe a start.



        In the case $g=0$, Maple says that for $0 le k < 4$,
        $$ sum_{n=0}^infty frac{k^n}{{2n choose n}} = frac{4}{4-k} + frac{4 sqrt{k}}{(4-k)^{3/2}} arcsin(sqrt{k}/2) $$
        Call this $G_0(k)$. Note that $arcsin(sqrt{k}/2) = pi/6$, $pi/4$, $pi/3$ for $k=1,2,3$, so that's where we're going to get the $pi$'s.



        Now since $k^n n^g = left(k dfrac{partial}{partial k}right)^g k^n$
        your sum
        $$ G_g(k) = sum_{n=0}^infty frac{k^n n^g}{{2n choose n}} = left( k frac{partial}{partial k}right)^g G_0(k) $$



        This has exponential generating function
        $$ sum_{g=0}^infty frac{G_g(k)}{g!} z^g = G_0(k e^z)$$



        Thus the case $g=4$ is $4!$ times the coefficient of $z^4$ in the Maclaurin series of $G_0(k e^z)$, namely
        $$
        4,{frac {sqrt {k} left( {k}^{4}+74,{k}^{3}+516,{k}^{2}+464,k+16
        right) arcsin left( sqrt {k}/2 right) }{ left( 4-k right)
        ^{11/2}}}+{frac {12,{k}^{4}+460,{k}^{3}+1624,{k}^{2}+496,k}{
        left( 4-k right) ^{5}}}
        $$

        In general it looks like we'll have
        $$G_g(k) = frac{P_g(k)}{(4-k)^{g+1}} + frac{sqrt{k} Q_g(k)}{(4-k)^{g+3/2}} arcsinleft(sqrt{k}/2right) $$
        for some polynomials $P_g$ and $Q_g$ of degree $g$. These satisfy recursions
        $$ eqalign{P_{g+1} &= (4-k) k P'_g + (1+g)k P_g + frac{k Q_g}{2}cr
        Q_{g+1} &= (4-k)k Q'_g + (2 + k + g k) Q_gcr}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 17 at 18:50

























        answered Jan 17 at 18:16









        Robert IsraelRobert Israel

        325k23214468




        325k23214468






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077201%2fconjecture-sum-n-0-infty-frackn2n-choose-n-cdot-ng-a-gb-g-pi%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter