Does $int_e^infty{frac{ln(x)^alpha}{x}dx}$ exists?












0












$begingroup$


My task is to determine wetherthe integral $int_e^infty{frac{ln(x)^alpha}{x},dx}$ does exist or not in depencence of $alphain mathbb{R}$.



For that I wrote $b$ instead of $infty$ and then calculated the integral using substitution, which should be $frac{1}{alpha+1}((ln(b))^{alpha+1}-1)$. Now for the improper integral I get $limlimits_{b->infty}(int_e^b(frac{ln(x)^alpha}{x}dx))=frac{1}{alpha+1}cdot(limlimits_{b->infty}ln(b)^{alpha+1}-1)$



And because $limlimits_{c->infty}ln(c)=infty$ and $limlimits_{c->infty} c^{alpha+1} = left{
begin{array}{ll}
infty & alphageq -1 \
1 & alpha=-1 \
0 & alpha<-1
end{array}
right.
$



So the limit only exists for $alpha<-1$, is this right?










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is the right result
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 13:20










  • $begingroup$
    Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
    $endgroup$
    – user
    Jan 12 at 13:25












  • $begingroup$
    because ln(c) is infinity anyway
    $endgroup$
    – Yefexem
    Jan 12 at 13:28










  • $begingroup$
    Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
    $endgroup$
    – Rhys Hughes
    Jan 12 at 13:38


















0












$begingroup$


My task is to determine wetherthe integral $int_e^infty{frac{ln(x)^alpha}{x},dx}$ does exist or not in depencence of $alphain mathbb{R}$.



For that I wrote $b$ instead of $infty$ and then calculated the integral using substitution, which should be $frac{1}{alpha+1}((ln(b))^{alpha+1}-1)$. Now for the improper integral I get $limlimits_{b->infty}(int_e^b(frac{ln(x)^alpha}{x}dx))=frac{1}{alpha+1}cdot(limlimits_{b->infty}ln(b)^{alpha+1}-1)$



And because $limlimits_{c->infty}ln(c)=infty$ and $limlimits_{c->infty} c^{alpha+1} = left{
begin{array}{ll}
infty & alphageq -1 \
1 & alpha=-1 \
0 & alpha<-1
end{array}
right.
$



So the limit only exists for $alpha<-1$, is this right?










share|cite|improve this question











$endgroup$












  • $begingroup$
    This is the right result
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 13:20










  • $begingroup$
    Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
    $endgroup$
    – user
    Jan 12 at 13:25












  • $begingroup$
    because ln(c) is infinity anyway
    $endgroup$
    – Yefexem
    Jan 12 at 13:28










  • $begingroup$
    Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
    $endgroup$
    – Rhys Hughes
    Jan 12 at 13:38
















0












0








0





$begingroup$


My task is to determine wetherthe integral $int_e^infty{frac{ln(x)^alpha}{x},dx}$ does exist or not in depencence of $alphain mathbb{R}$.



For that I wrote $b$ instead of $infty$ and then calculated the integral using substitution, which should be $frac{1}{alpha+1}((ln(b))^{alpha+1}-1)$. Now for the improper integral I get $limlimits_{b->infty}(int_e^b(frac{ln(x)^alpha}{x}dx))=frac{1}{alpha+1}cdot(limlimits_{b->infty}ln(b)^{alpha+1}-1)$



And because $limlimits_{c->infty}ln(c)=infty$ and $limlimits_{c->infty} c^{alpha+1} = left{
begin{array}{ll}
infty & alphageq -1 \
1 & alpha=-1 \
0 & alpha<-1
end{array}
right.
$



So the limit only exists for $alpha<-1$, is this right?










share|cite|improve this question











$endgroup$




My task is to determine wetherthe integral $int_e^infty{frac{ln(x)^alpha}{x},dx}$ does exist or not in depencence of $alphain mathbb{R}$.



For that I wrote $b$ instead of $infty$ and then calculated the integral using substitution, which should be $frac{1}{alpha+1}((ln(b))^{alpha+1}-1)$. Now for the improper integral I get $limlimits_{b->infty}(int_e^b(frac{ln(x)^alpha}{x}dx))=frac{1}{alpha+1}cdot(limlimits_{b->infty}ln(b)^{alpha+1}-1)$



And because $limlimits_{c->infty}ln(c)=infty$ and $limlimits_{c->infty} c^{alpha+1} = left{
begin{array}{ll}
infty & alphageq -1 \
1 & alpha=-1 \
0 & alpha<-1
end{array}
right.
$



So the limit only exists for $alpha<-1$, is this right?







improper-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 12 at 13:11









Bernard

121k740116




121k740116










asked Jan 12 at 13:04









YefexemYefexem

1




1












  • $begingroup$
    This is the right result
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 13:20










  • $begingroup$
    Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
    $endgroup$
    – user
    Jan 12 at 13:25












  • $begingroup$
    because ln(c) is infinity anyway
    $endgroup$
    – Yefexem
    Jan 12 at 13:28










  • $begingroup$
    Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
    $endgroup$
    – Rhys Hughes
    Jan 12 at 13:38




















  • $begingroup$
    This is the right result
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 13:20










  • $begingroup$
    Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
    $endgroup$
    – user
    Jan 12 at 13:25












  • $begingroup$
    because ln(c) is infinity anyway
    $endgroup$
    – Yefexem
    Jan 12 at 13:28










  • $begingroup$
    Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
    $endgroup$
    – Rhys Hughes
    Jan 12 at 13:38


















$begingroup$
This is the right result
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 13:20




$begingroup$
This is the right result
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 13:20












$begingroup$
Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
$endgroup$
– user
Jan 12 at 13:25






$begingroup$
Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
$endgroup$
– user
Jan 12 at 13:25














$begingroup$
because ln(c) is infinity anyway
$endgroup$
– Yefexem
Jan 12 at 13:28




$begingroup$
because ln(c) is infinity anyway
$endgroup$
– Yefexem
Jan 12 at 13:28












$begingroup$
Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
$endgroup$
– Rhys Hughes
Jan 12 at 13:38






$begingroup$
Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
$endgroup$
– Rhys Hughes
Jan 12 at 13:38












1 Answer
1






active

oldest

votes


















1












$begingroup$

$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Except if $alpha < -1$, I think.
    $endgroup$
    – Claude Leibovici
    Jan 12 at 15:39












  • $begingroup$
    @ClaudeLeibovici yes that sounds right
    $endgroup$
    – Henry Lee
    Jan 12 at 15:41











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070876%2fdoes-int-e-infty-frac-lnx-alphaxdx-exists%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Except if $alpha < -1$, I think.
    $endgroup$
    – Claude Leibovici
    Jan 12 at 15:39












  • $begingroup$
    @ClaudeLeibovici yes that sounds right
    $endgroup$
    – Henry Lee
    Jan 12 at 15:41
















1












$begingroup$

$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Except if $alpha < -1$, I think.
    $endgroup$
    – Claude Leibovici
    Jan 12 at 15:39












  • $begingroup$
    @ClaudeLeibovici yes that sounds right
    $endgroup$
    – Henry Lee
    Jan 12 at 15:41














1












1








1





$begingroup$

$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent






share|cite|improve this answer









$endgroup$



$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 12 at 13:46









Henry LeeHenry Lee

1,966219




1,966219












  • $begingroup$
    Except if $alpha < -1$, I think.
    $endgroup$
    – Claude Leibovici
    Jan 12 at 15:39












  • $begingroup$
    @ClaudeLeibovici yes that sounds right
    $endgroup$
    – Henry Lee
    Jan 12 at 15:41


















  • $begingroup$
    Except if $alpha < -1$, I think.
    $endgroup$
    – Claude Leibovici
    Jan 12 at 15:39












  • $begingroup$
    @ClaudeLeibovici yes that sounds right
    $endgroup$
    – Henry Lee
    Jan 12 at 15:41
















$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39






$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39














$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41




$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070876%2fdoes-int-e-infty-frac-lnx-alphaxdx-exists%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith