Does $int_e^infty{frac{ln(x)^alpha}{x}dx}$ exists?
$begingroup$
My task is to determine wetherthe integral $int_e^infty{frac{ln(x)^alpha}{x},dx}$ does exist or not in depencence of $alphain mathbb{R}$.
For that I wrote $b$ instead of $infty$ and then calculated the integral using substitution, which should be $frac{1}{alpha+1}((ln(b))^{alpha+1}-1)$. Now for the improper integral I get $limlimits_{b->infty}(int_e^b(frac{ln(x)^alpha}{x}dx))=frac{1}{alpha+1}cdot(limlimits_{b->infty}ln(b)^{alpha+1}-1)$
And because $limlimits_{c->infty}ln(c)=infty$ and $limlimits_{c->infty} c^{alpha+1} = left{
begin{array}{ll}
infty & alphageq -1 \
1 & alpha=-1 \
0 & alpha<-1
end{array}
right.
$
So the limit only exists for $alpha<-1$, is this right?
improper-integrals
$endgroup$
add a comment |
$begingroup$
My task is to determine wetherthe integral $int_e^infty{frac{ln(x)^alpha}{x},dx}$ does exist or not in depencence of $alphain mathbb{R}$.
For that I wrote $b$ instead of $infty$ and then calculated the integral using substitution, which should be $frac{1}{alpha+1}((ln(b))^{alpha+1}-1)$. Now for the improper integral I get $limlimits_{b->infty}(int_e^b(frac{ln(x)^alpha}{x}dx))=frac{1}{alpha+1}cdot(limlimits_{b->infty}ln(b)^{alpha+1}-1)$
And because $limlimits_{c->infty}ln(c)=infty$ and $limlimits_{c->infty} c^{alpha+1} = left{
begin{array}{ll}
infty & alphageq -1 \
1 & alpha=-1 \
0 & alpha<-1
end{array}
right.
$
So the limit only exists for $alpha<-1$, is this right?
improper-integrals
$endgroup$
$begingroup$
This is the right result
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 13:20
$begingroup$
Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
$endgroup$
– user
Jan 12 at 13:25
$begingroup$
because ln(c) is infinity anyway
$endgroup$
– Yefexem
Jan 12 at 13:28
$begingroup$
Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
$endgroup$
– Rhys Hughes
Jan 12 at 13:38
add a comment |
$begingroup$
My task is to determine wetherthe integral $int_e^infty{frac{ln(x)^alpha}{x},dx}$ does exist or not in depencence of $alphain mathbb{R}$.
For that I wrote $b$ instead of $infty$ and then calculated the integral using substitution, which should be $frac{1}{alpha+1}((ln(b))^{alpha+1}-1)$. Now for the improper integral I get $limlimits_{b->infty}(int_e^b(frac{ln(x)^alpha}{x}dx))=frac{1}{alpha+1}cdot(limlimits_{b->infty}ln(b)^{alpha+1}-1)$
And because $limlimits_{c->infty}ln(c)=infty$ and $limlimits_{c->infty} c^{alpha+1} = left{
begin{array}{ll}
infty & alphageq -1 \
1 & alpha=-1 \
0 & alpha<-1
end{array}
right.
$
So the limit only exists for $alpha<-1$, is this right?
improper-integrals
$endgroup$
My task is to determine wetherthe integral $int_e^infty{frac{ln(x)^alpha}{x},dx}$ does exist or not in depencence of $alphain mathbb{R}$.
For that I wrote $b$ instead of $infty$ and then calculated the integral using substitution, which should be $frac{1}{alpha+1}((ln(b))^{alpha+1}-1)$. Now for the improper integral I get $limlimits_{b->infty}(int_e^b(frac{ln(x)^alpha}{x}dx))=frac{1}{alpha+1}cdot(limlimits_{b->infty}ln(b)^{alpha+1}-1)$
And because $limlimits_{c->infty}ln(c)=infty$ and $limlimits_{c->infty} c^{alpha+1} = left{
begin{array}{ll}
infty & alphageq -1 \
1 & alpha=-1 \
0 & alpha<-1
end{array}
right.
$
So the limit only exists for $alpha<-1$, is this right?
improper-integrals
improper-integrals
edited Jan 12 at 13:11
Bernard
121k740116
121k740116
asked Jan 12 at 13:04
YefexemYefexem
1
1
$begingroup$
This is the right result
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 13:20
$begingroup$
Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
$endgroup$
– user
Jan 12 at 13:25
$begingroup$
because ln(c) is infinity anyway
$endgroup$
– Yefexem
Jan 12 at 13:28
$begingroup$
Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
$endgroup$
– Rhys Hughes
Jan 12 at 13:38
add a comment |
$begingroup$
This is the right result
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 13:20
$begingroup$
Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
$endgroup$
– user
Jan 12 at 13:25
$begingroup$
because ln(c) is infinity anyway
$endgroup$
– Yefexem
Jan 12 at 13:28
$begingroup$
Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
$endgroup$
– Rhys Hughes
Jan 12 at 13:38
$begingroup$
This is the right result
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 13:20
$begingroup$
This is the right result
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 13:20
$begingroup$
Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
$endgroup$
– user
Jan 12 at 13:25
$begingroup$
Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
$endgroup$
– user
Jan 12 at 13:25
$begingroup$
because ln(c) is infinity anyway
$endgroup$
– Yefexem
Jan 12 at 13:28
$begingroup$
because ln(c) is infinity anyway
$endgroup$
– Yefexem
Jan 12 at 13:28
$begingroup$
Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
$endgroup$
– Rhys Hughes
Jan 12 at 13:38
$begingroup$
Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
$endgroup$
– Rhys Hughes
Jan 12 at 13:38
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent
$endgroup$
$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39
$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070876%2fdoes-int-e-infty-frac-lnx-alphaxdx-exists%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent
$endgroup$
$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39
$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41
add a comment |
$begingroup$
$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent
$endgroup$
$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39
$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41
add a comment |
$begingroup$
$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent
$endgroup$
$$I=int_e^inftyfrac{ln^a(x)}{x}dx$$
$$u=ln(x),,dx=xdu$$
$$I=int_1^infty u^adu=left[frac{u^{a+1}}{a+1}right]_1^infty$$
and this is clearly divergent
answered Jan 12 at 13:46
Henry LeeHenry Lee
1,966219
1,966219
$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39
$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41
add a comment |
$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39
$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41
$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39
$begingroup$
Except if $alpha < -1$, I think.
$endgroup$
– Claude Leibovici
Jan 12 at 15:39
$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41
$begingroup$
@ClaudeLeibovici yes that sounds right
$endgroup$
– Henry Lee
Jan 12 at 15:41
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070876%2fdoes-int-e-infty-frac-lnx-alphaxdx-exists%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This is the right result
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 13:20
$begingroup$
Why do you consider in the end the lim of a power of $c $ instead that of $ln c $?
$endgroup$
– user
Jan 12 at 13:25
$begingroup$
because ln(c) is infinity anyway
$endgroup$
– Yefexem
Jan 12 at 13:28
$begingroup$
Does: $$int{frac{(ln x)^{alpha}}{x}dx}=frac{(ln x)^{alpha +1}}{alpha+1}+C$$ help? (FYI: I used IBP)
$endgroup$
– Rhys Hughes
Jan 12 at 13:38