Non-abelian group in which $forall_{a,bin G} (ab)^3=a^3b^3$ [duplicate]












1












$begingroup$



This question already has an answer here:




  • If a group satisfies $x^3=1$ for all $x$, is it necessarily abelian?

    1 answer




Give an example of a non-abelian group, in which $(ab)^3=a^3b^3$ for every element $a,b$ in $G$.



I understand that such a group should be of order divisible by 3 (see Problem from Herstein on group theory). Also, it is easily seen that $(ab)^3=a^3b^3 iff (ba)^2=a^2b^2$. But I can't come up with one single example.










share|cite|improve this question











$endgroup$



marked as duplicate by Jack Schmidt, Hagen von Eitzen, user61527, Andrew D. Hwang, Davide Giraudo Feb 16 '14 at 18:12


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 2




    $begingroup$
    Any nonabelian group of exponent 3, for example.
    $endgroup$
    – Najib Idrissi
    Feb 16 '14 at 16:38
















1












$begingroup$



This question already has an answer here:




  • If a group satisfies $x^3=1$ for all $x$, is it necessarily abelian?

    1 answer




Give an example of a non-abelian group, in which $(ab)^3=a^3b^3$ for every element $a,b$ in $G$.



I understand that such a group should be of order divisible by 3 (see Problem from Herstein on group theory). Also, it is easily seen that $(ab)^3=a^3b^3 iff (ba)^2=a^2b^2$. But I can't come up with one single example.










share|cite|improve this question











$endgroup$



marked as duplicate by Jack Schmidt, Hagen von Eitzen, user61527, Andrew D. Hwang, Davide Giraudo Feb 16 '14 at 18:12


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 2




    $begingroup$
    Any nonabelian group of exponent 3, for example.
    $endgroup$
    – Najib Idrissi
    Feb 16 '14 at 16:38














1












1








1


0



$begingroup$



This question already has an answer here:




  • If a group satisfies $x^3=1$ for all $x$, is it necessarily abelian?

    1 answer




Give an example of a non-abelian group, in which $(ab)^3=a^3b^3$ for every element $a,b$ in $G$.



I understand that such a group should be of order divisible by 3 (see Problem from Herstein on group theory). Also, it is easily seen that $(ab)^3=a^3b^3 iff (ba)^2=a^2b^2$. But I can't come up with one single example.










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • If a group satisfies $x^3=1$ for all $x$, is it necessarily abelian?

    1 answer




Give an example of a non-abelian group, in which $(ab)^3=a^3b^3$ for every element $a,b$ in $G$.



I understand that such a group should be of order divisible by 3 (see Problem from Herstein on group theory). Also, it is easily seen that $(ab)^3=a^3b^3 iff (ba)^2=a^2b^2$. But I can't come up with one single example.





This question already has an answer here:




  • If a group satisfies $x^3=1$ for all $x$, is it necessarily abelian?

    1 answer








group-theory abelian-groups






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 13 '17 at 12:20









Community

1




1










asked Feb 16 '14 at 16:18









UntitledUntitled

183111




183111




marked as duplicate by Jack Schmidt, Hagen von Eitzen, user61527, Andrew D. Hwang, Davide Giraudo Feb 16 '14 at 18:12


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Jack Schmidt, Hagen von Eitzen, user61527, Andrew D. Hwang, Davide Giraudo Feb 16 '14 at 18:12


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 2




    $begingroup$
    Any nonabelian group of exponent 3, for example.
    $endgroup$
    – Najib Idrissi
    Feb 16 '14 at 16:38














  • 2




    $begingroup$
    Any nonabelian group of exponent 3, for example.
    $endgroup$
    – Najib Idrissi
    Feb 16 '14 at 16:38








2




2




$begingroup$
Any nonabelian group of exponent 3, for example.
$endgroup$
– Najib Idrissi
Feb 16 '14 at 16:38




$begingroup$
Any nonabelian group of exponent 3, for example.
$endgroup$
– Najib Idrissi
Feb 16 '14 at 16:38










1 Answer
1






active

oldest

votes


















1












$begingroup$

Hint: try the group of triangular $3 times 3$ matrices over the field with 3 elements, with 1's on the diagonal. This group has exponent 3, that is for every $g in G$, it holds that $g^3=1$. Can you see that $|G|=27$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I'd just like to add: as evidence that $G$ is not abelian, note that $A = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \}$ and $B = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \}$ satisfy $AB neq BA$.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 16:50












  • $begingroup$
    Yes good remark - on the other hand, I was hoping that the OP would figure that (non-abelianess) out for him/herself.
    $endgroup$
    – Nicky Hekster
    Feb 16 '14 at 17:04










  • $begingroup$
    Ah, I suppose I could have been more delicate there. I wanted to save OP the hunt for non-commuting matrices, which is particularly unpleasant if you don't know what to look for.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 17:11




















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Hint: try the group of triangular $3 times 3$ matrices over the field with 3 elements, with 1's on the diagonal. This group has exponent 3, that is for every $g in G$, it holds that $g^3=1$. Can you see that $|G|=27$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I'd just like to add: as evidence that $G$ is not abelian, note that $A = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \}$ and $B = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \}$ satisfy $AB neq BA$.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 16:50












  • $begingroup$
    Yes good remark - on the other hand, I was hoping that the OP would figure that (non-abelianess) out for him/herself.
    $endgroup$
    – Nicky Hekster
    Feb 16 '14 at 17:04










  • $begingroup$
    Ah, I suppose I could have been more delicate there. I wanted to save OP the hunt for non-commuting matrices, which is particularly unpleasant if you don't know what to look for.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 17:11


















1












$begingroup$

Hint: try the group of triangular $3 times 3$ matrices over the field with 3 elements, with 1's on the diagonal. This group has exponent 3, that is for every $g in G$, it holds that $g^3=1$. Can you see that $|G|=27$?






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I'd just like to add: as evidence that $G$ is not abelian, note that $A = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \}$ and $B = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \}$ satisfy $AB neq BA$.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 16:50












  • $begingroup$
    Yes good remark - on the other hand, I was hoping that the OP would figure that (non-abelianess) out for him/herself.
    $endgroup$
    – Nicky Hekster
    Feb 16 '14 at 17:04










  • $begingroup$
    Ah, I suppose I could have been more delicate there. I wanted to save OP the hunt for non-commuting matrices, which is particularly unpleasant if you don't know what to look for.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 17:11
















1












1








1





$begingroup$

Hint: try the group of triangular $3 times 3$ matrices over the field with 3 elements, with 1's on the diagonal. This group has exponent 3, that is for every $g in G$, it holds that $g^3=1$. Can you see that $|G|=27$?






share|cite|improve this answer









$endgroup$



Hint: try the group of triangular $3 times 3$ matrices over the field with 3 elements, with 1's on the diagonal. This group has exponent 3, that is for every $g in G$, it holds that $g^3=1$. Can you see that $|G|=27$?







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Feb 16 '14 at 16:33









Nicky HeksterNicky Hekster

28.5k63456




28.5k63456












  • $begingroup$
    I'd just like to add: as evidence that $G$ is not abelian, note that $A = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \}$ and $B = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \}$ satisfy $AB neq BA$.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 16:50












  • $begingroup$
    Yes good remark - on the other hand, I was hoping that the OP would figure that (non-abelianess) out for him/herself.
    $endgroup$
    – Nicky Hekster
    Feb 16 '14 at 17:04










  • $begingroup$
    Ah, I suppose I could have been more delicate there. I wanted to save OP the hunt for non-commuting matrices, which is particularly unpleasant if you don't know what to look for.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 17:11




















  • $begingroup$
    I'd just like to add: as evidence that $G$ is not abelian, note that $A = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \}$ and $B = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \}$ satisfy $AB neq BA$.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 16:50












  • $begingroup$
    Yes good remark - on the other hand, I was hoping that the OP would figure that (non-abelianess) out for him/herself.
    $endgroup$
    – Nicky Hekster
    Feb 16 '14 at 17:04










  • $begingroup$
    Ah, I suppose I could have been more delicate there. I wanted to save OP the hunt for non-commuting matrices, which is particularly unpleasant if you don't know what to look for.
    $endgroup$
    – Omnomnomnom
    Feb 16 '14 at 17:11


















$begingroup$
I'd just like to add: as evidence that $G$ is not abelian, note that $A = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \}$ and $B = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \}$ satisfy $AB neq BA$.
$endgroup$
– Omnomnomnom
Feb 16 '14 at 16:50






$begingroup$
I'd just like to add: as evidence that $G$ is not abelian, note that $A = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \}$ and $B = pmatrix{ 1 & 1 & 0 \ 0 & 1 & 2 \ 0 & 0 & 1 \}$ satisfy $AB neq BA$.
$endgroup$
– Omnomnomnom
Feb 16 '14 at 16:50














$begingroup$
Yes good remark - on the other hand, I was hoping that the OP would figure that (non-abelianess) out for him/herself.
$endgroup$
– Nicky Hekster
Feb 16 '14 at 17:04




$begingroup$
Yes good remark - on the other hand, I was hoping that the OP would figure that (non-abelianess) out for him/herself.
$endgroup$
– Nicky Hekster
Feb 16 '14 at 17:04












$begingroup$
Ah, I suppose I could have been more delicate there. I wanted to save OP the hunt for non-commuting matrices, which is particularly unpleasant if you don't know what to look for.
$endgroup$
– Omnomnomnom
Feb 16 '14 at 17:11






$begingroup$
Ah, I suppose I could have been more delicate there. I wanted to save OP the hunt for non-commuting matrices, which is particularly unpleasant if you don't know what to look for.
$endgroup$
– Omnomnomnom
Feb 16 '14 at 17:11





Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]