How do I prove $zDelta(z+1) = Delta(z)$, where $Gamma(z)=1/Delta(z)$?
$begingroup$
EDIT notes: Deleted irrelevant information
I'm asked to prove that $zDelta(z+1)=Delta(z)$, where $Delta(z)equiv ze^{gamma z}prodlimits_{m=1}^infty(1+z/m)e^{-z/m}$ and $gamma =lim_{ntoinfty} 1+ 1/2 + 1/3 + ... + 1/n-log n$.
My idea was to look at finite n both in $gamma$ and in the product. First I assumed the theorem to be true, thus getting $Delta(z+1)=Delta(z)/z$. I divided both sides by $e^{gamma z}$ and then took the logarithm. From here, managed to prove equivalence. Is there another, "cleaner" proof?
complex-analysis gamma-function
$endgroup$
add a comment |
$begingroup$
EDIT notes: Deleted irrelevant information
I'm asked to prove that $zDelta(z+1)=Delta(z)$, where $Delta(z)equiv ze^{gamma z}prodlimits_{m=1}^infty(1+z/m)e^{-z/m}$ and $gamma =lim_{ntoinfty} 1+ 1/2 + 1/3 + ... + 1/n-log n$.
My idea was to look at finite n both in $gamma$ and in the product. First I assumed the theorem to be true, thus getting $Delta(z+1)=Delta(z)/z$. I divided both sides by $e^{gamma z}$ and then took the logarithm. From here, managed to prove equivalence. Is there another, "cleaner" proof?
complex-analysis gamma-function
$endgroup$
add a comment |
$begingroup$
EDIT notes: Deleted irrelevant information
I'm asked to prove that $zDelta(z+1)=Delta(z)$, where $Delta(z)equiv ze^{gamma z}prodlimits_{m=1}^infty(1+z/m)e^{-z/m}$ and $gamma =lim_{ntoinfty} 1+ 1/2 + 1/3 + ... + 1/n-log n$.
My idea was to look at finite n both in $gamma$ and in the product. First I assumed the theorem to be true, thus getting $Delta(z+1)=Delta(z)/z$. I divided both sides by $e^{gamma z}$ and then took the logarithm. From here, managed to prove equivalence. Is there another, "cleaner" proof?
complex-analysis gamma-function
$endgroup$
EDIT notes: Deleted irrelevant information
I'm asked to prove that $zDelta(z+1)=Delta(z)$, where $Delta(z)equiv ze^{gamma z}prodlimits_{m=1}^infty(1+z/m)e^{-z/m}$ and $gamma =lim_{ntoinfty} 1+ 1/2 + 1/3 + ... + 1/n-log n$.
My idea was to look at finite n both in $gamma$ and in the product. First I assumed the theorem to be true, thus getting $Delta(z+1)=Delta(z)/z$. I divided both sides by $e^{gamma z}$ and then took the logarithm. From here, managed to prove equivalence. Is there another, "cleaner" proof?
complex-analysis gamma-function
complex-analysis gamma-function
edited Jan 12 at 17:01
Idea Flux
asked Nov 30 '18 at 14:37
Idea FluxIdea Flux
86
86
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Consider the telescoping sum
$$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
Then
$$- log(1+z) =
sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
=
sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$
Apply exponential to get
$$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
Then
$$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
and we are done
$endgroup$
$begingroup$
Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
$endgroup$
– Idea Flux
Nov 30 '18 at 15:49
$begingroup$
Thank you very much. It is a clean/neat proof!
$endgroup$
– Idea Flux
Dec 3 '18 at 10:51
$begingroup$
How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
$endgroup$
– Idea Flux
Dec 4 '18 at 21:05
$begingroup$
$1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
$endgroup$
– jjagmath
Dec 4 '18 at 23:58
$begingroup$
Thank you * character filling *
$endgroup$
– Idea Flux
Dec 5 '18 at 11:29
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020161%2fhow-do-i-prove-z-deltaz1-deltaz-where-gammaz-1-deltaz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider the telescoping sum
$$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
Then
$$- log(1+z) =
sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
=
sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$
Apply exponential to get
$$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
Then
$$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
and we are done
$endgroup$
$begingroup$
Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
$endgroup$
– Idea Flux
Nov 30 '18 at 15:49
$begingroup$
Thank you very much. It is a clean/neat proof!
$endgroup$
– Idea Flux
Dec 3 '18 at 10:51
$begingroup$
How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
$endgroup$
– Idea Flux
Dec 4 '18 at 21:05
$begingroup$
$1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
$endgroup$
– jjagmath
Dec 4 '18 at 23:58
$begingroup$
Thank you * character filling *
$endgroup$
– Idea Flux
Dec 5 '18 at 11:29
|
show 1 more comment
$begingroup$
Consider the telescoping sum
$$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
Then
$$- log(1+z) =
sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
=
sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$
Apply exponential to get
$$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
Then
$$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
and we are done
$endgroup$
$begingroup$
Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
$endgroup$
– Idea Flux
Nov 30 '18 at 15:49
$begingroup$
Thank you very much. It is a clean/neat proof!
$endgroup$
– Idea Flux
Dec 3 '18 at 10:51
$begingroup$
How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
$endgroup$
– Idea Flux
Dec 4 '18 at 21:05
$begingroup$
$1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
$endgroup$
– jjagmath
Dec 4 '18 at 23:58
$begingroup$
Thank you * character filling *
$endgroup$
– Idea Flux
Dec 5 '18 at 11:29
|
show 1 more comment
$begingroup$
Consider the telescoping sum
$$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
Then
$$- log(1+z) =
sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
=
sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$
Apply exponential to get
$$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
Then
$$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
and we are done
$endgroup$
Consider the telescoping sum
$$sum_{m=1}^n left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) = logleft(1+frac{z}{n+1}right) - log(1+z)$$
Then
$$- log(1+z) =
sum_{m=1}^infty left(logleft(1+frac{z}{m+1}right)-logleft(1+frac{z}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-logleft(frac{m+1}{m}right)right) =
sum_{m=1}^infty left(logleft(frac{z+m+1}{z+m}right)-frac{1}{m}+frac{1}{m}-logleft(frac{m+1}{m}right)right)
=
sum_{m=1}^infty left(logleft(frac{1+(z+1)/m}{1+z/m}right)-frac{1}{m}right)+gamma$$
Apply exponential to get
$$frac{1}{1+z} = e^gamma prod_{m=1}^inftyfrac{1+(z+1)/m}{1+z/m}e^{-1/m}=frac{e^{gamma(z+1)}}{e^{gamma z}}prod_{m=1}^infty frac{(1+(z+1)/m)e^{-(z+1)/m}}{(1+z/m)e^{-z/m}}$$
Then
$$z e^{gamma z} prod_{m=1}^infty (1+z/m)e^{-z/m} = z(z+1) e^{gamma(z+1)}prod_{m=1}^infty (1+(z+1)/m)e^{-(z+1)/m}$$
and we are done
answered Nov 30 '18 at 15:41
jjagmathjjagmath
2247
2247
$begingroup$
Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
$endgroup$
– Idea Flux
Nov 30 '18 at 15:49
$begingroup$
Thank you very much. It is a clean/neat proof!
$endgroup$
– Idea Flux
Dec 3 '18 at 10:51
$begingroup$
How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
$endgroup$
– Idea Flux
Dec 4 '18 at 21:05
$begingroup$
$1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
$endgroup$
– jjagmath
Dec 4 '18 at 23:58
$begingroup$
Thank you * character filling *
$endgroup$
– Idea Flux
Dec 5 '18 at 11:29
|
show 1 more comment
$begingroup$
Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
$endgroup$
– Idea Flux
Nov 30 '18 at 15:49
$begingroup$
Thank you very much. It is a clean/neat proof!
$endgroup$
– Idea Flux
Dec 3 '18 at 10:51
$begingroup$
How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
$endgroup$
– Idea Flux
Dec 4 '18 at 21:05
$begingroup$
$1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
$endgroup$
– jjagmath
Dec 4 '18 at 23:58
$begingroup$
Thank you * character filling *
$endgroup$
– Idea Flux
Dec 5 '18 at 11:29
$begingroup$
Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
$endgroup$
– Idea Flux
Nov 30 '18 at 15:49
$begingroup$
Thank you for the answer :) Unfortunately, monday will be the earliest I can take a close look at it.
$endgroup$
– Idea Flux
Nov 30 '18 at 15:49
$begingroup$
Thank you very much. It is a clean/neat proof!
$endgroup$
– Idea Flux
Dec 3 '18 at 10:51
$begingroup$
Thank you very much. It is a clean/neat proof!
$endgroup$
– Idea Flux
Dec 3 '18 at 10:51
$begingroup$
How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
$endgroup$
– Idea Flux
Dec 4 '18 at 21:05
$begingroup$
How does $1/m -log[(m+1)/m]$ give $gamma$? I get $1+1/2+...+1/n - (log(2/1)+log(3/2)+...+log[(n+1)/n])=1+1/2+...+1/n-log(n+1)$ which is almost equal to $gamma$. I can only think of something like $log(n+1)/log(n)to 0$ as $ntoinfty$
$endgroup$
– Idea Flux
Dec 4 '18 at 21:05
$begingroup$
$1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
$endgroup$
– jjagmath
Dec 4 '18 at 23:58
$begingroup$
$1+1/2+...+1/n - log(n+1) = 1+1/2+...+1/n -log(n) + log(n) - log(n+1)$ But $log(n)-log(n+1) = log(n/(n+1)) to 0$ as $n to infty$
$endgroup$
– jjagmath
Dec 4 '18 at 23:58
$begingroup$
Thank you * character filling *
$endgroup$
– Idea Flux
Dec 5 '18 at 11:29
$begingroup$
Thank you * character filling *
$endgroup$
– Idea Flux
Dec 5 '18 at 11:29
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020161%2fhow-do-i-prove-z-deltaz1-deltaz-where-gammaz-1-deltaz%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown