$a equiv b$ (mod $p$) implies $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?
$begingroup$
Let $p$ be a prime number. If $a equiv b$ (mod $p$), does that imply $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?
I think the answer will be yes, and I suspect that the way of proving it will involve writing $a^{p^n}-b^{p^n}$ as a multiple of $(a-b)^n$.
I also noticed that $n<p^n$, and I'm wondering if this will make the proof easier or not.
prime-numbers modular-arithmetic cyclotomic-polynomials
$endgroup$
add a comment |
$begingroup$
Let $p$ be a prime number. If $a equiv b$ (mod $p$), does that imply $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?
I think the answer will be yes, and I suspect that the way of proving it will involve writing $a^{p^n}-b^{p^n}$ as a multiple of $(a-b)^n$.
I also noticed that $n<p^n$, and I'm wondering if this will make the proof easier or not.
prime-numbers modular-arithmetic cyclotomic-polynomials
$endgroup$
add a comment |
$begingroup$
Let $p$ be a prime number. If $a equiv b$ (mod $p$), does that imply $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?
I think the answer will be yes, and I suspect that the way of proving it will involve writing $a^{p^n}-b^{p^n}$ as a multiple of $(a-b)^n$.
I also noticed that $n<p^n$, and I'm wondering if this will make the proof easier or not.
prime-numbers modular-arithmetic cyclotomic-polynomials
$endgroup$
Let $p$ be a prime number. If $a equiv b$ (mod $p$), does that imply $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?
I think the answer will be yes, and I suspect that the way of proving it will involve writing $a^{p^n}-b^{p^n}$ as a multiple of $(a-b)^n$.
I also noticed that $n<p^n$, and I'm wondering if this will make the proof easier or not.
prime-numbers modular-arithmetic cyclotomic-polynomials
prime-numbers modular-arithmetic cyclotomic-polynomials
asked Nov 8 '18 at 18:19
Pascal's WagerPascal's Wager
357315
357315
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$a=b+kp$ where $k$ is an integer
$(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$
$equiv b^{p^n}pmod{p^{n+1}}$
$endgroup$
$begingroup$
So simple yet so useful! Thank you!
$endgroup$
– Pascal's Wager
Nov 8 '18 at 23:45
add a comment |
$begingroup$
There is following theorem (Lifting The Exponent Lemma).
We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.
Theorem.
Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:
- if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;
- if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.
Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.
Your statement is a consequence of this theorem.
Some links about LTE lemma:
What can I do with the lifting the exponent lemma?
https://brilliant.org/wiki/lifting-the-exponent/
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990376%2fa-equiv-b-mod-p-implies-apn-equiv-bpn-mod-pn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$a=b+kp$ where $k$ is an integer
$(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$
$equiv b^{p^n}pmod{p^{n+1}}$
$endgroup$
$begingroup$
So simple yet so useful! Thank you!
$endgroup$
– Pascal's Wager
Nov 8 '18 at 23:45
add a comment |
$begingroup$
$a=b+kp$ where $k$ is an integer
$(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$
$equiv b^{p^n}pmod{p^{n+1}}$
$endgroup$
$begingroup$
So simple yet so useful! Thank you!
$endgroup$
– Pascal's Wager
Nov 8 '18 at 23:45
add a comment |
$begingroup$
$a=b+kp$ where $k$ is an integer
$(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$
$equiv b^{p^n}pmod{p^{n+1}}$
$endgroup$
$a=b+kp$ where $k$ is an integer
$(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$
$equiv b^{p^n}pmod{p^{n+1}}$
answered Nov 8 '18 at 18:28
lab bhattacharjeelab bhattacharjee
225k15157275
225k15157275
$begingroup$
So simple yet so useful! Thank you!
$endgroup$
– Pascal's Wager
Nov 8 '18 at 23:45
add a comment |
$begingroup$
So simple yet so useful! Thank you!
$endgroup$
– Pascal's Wager
Nov 8 '18 at 23:45
$begingroup$
So simple yet so useful! Thank you!
$endgroup$
– Pascal's Wager
Nov 8 '18 at 23:45
$begingroup$
So simple yet so useful! Thank you!
$endgroup$
– Pascal's Wager
Nov 8 '18 at 23:45
add a comment |
$begingroup$
There is following theorem (Lifting The Exponent Lemma).
We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.
Theorem.
Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:
- if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;
- if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.
Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.
Your statement is a consequence of this theorem.
Some links about LTE lemma:
What can I do with the lifting the exponent lemma?
https://brilliant.org/wiki/lifting-the-exponent/
$endgroup$
add a comment |
$begingroup$
There is following theorem (Lifting The Exponent Lemma).
We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.
Theorem.
Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:
- if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;
- if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.
Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.
Your statement is a consequence of this theorem.
Some links about LTE lemma:
What can I do with the lifting the exponent lemma?
https://brilliant.org/wiki/lifting-the-exponent/
$endgroup$
add a comment |
$begingroup$
There is following theorem (Lifting The Exponent Lemma).
We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.
Theorem.
Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:
- if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;
- if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.
Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.
Your statement is a consequence of this theorem.
Some links about LTE lemma:
What can I do with the lifting the exponent lemma?
https://brilliant.org/wiki/lifting-the-exponent/
$endgroup$
There is following theorem (Lifting The Exponent Lemma).
We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.
Theorem.
Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:
- if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;
- if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.
Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.
Your statement is a consequence of this theorem.
Some links about LTE lemma:
What can I do with the lifting the exponent lemma?
https://brilliant.org/wiki/lifting-the-exponent/
answered Jan 12 at 15:00
richrowrichrow
17316
17316
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990376%2fa-equiv-b-mod-p-implies-apn-equiv-bpn-mod-pn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown