$a equiv b$ (mod $p$) implies $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?












1












$begingroup$


Let $p$ be a prime number. If $a equiv b$ (mod $p$), does that imply $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?



I think the answer will be yes, and I suspect that the way of proving it will involve writing $a^{p^n}-b^{p^n}$ as a multiple of $(a-b)^n$.



I also noticed that $n<p^n$, and I'm wondering if this will make the proof easier or not.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $p$ be a prime number. If $a equiv b$ (mod $p$), does that imply $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?



    I think the answer will be yes, and I suspect that the way of proving it will involve writing $a^{p^n}-b^{p^n}$ as a multiple of $(a-b)^n$.



    I also noticed that $n<p^n$, and I'm wondering if this will make the proof easier or not.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $p$ be a prime number. If $a equiv b$ (mod $p$), does that imply $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?



      I think the answer will be yes, and I suspect that the way of proving it will involve writing $a^{p^n}-b^{p^n}$ as a multiple of $(a-b)^n$.



      I also noticed that $n<p^n$, and I'm wondering if this will make the proof easier or not.










      share|cite|improve this question









      $endgroup$




      Let $p$ be a prime number. If $a equiv b$ (mod $p$), does that imply $a^{p^n} equiv b^{p^n}$ (mod $p^n$)?



      I think the answer will be yes, and I suspect that the way of proving it will involve writing $a^{p^n}-b^{p^n}$ as a multiple of $(a-b)^n$.



      I also noticed that $n<p^n$, and I'm wondering if this will make the proof easier or not.







      prime-numbers modular-arithmetic cyclotomic-polynomials






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 8 '18 at 18:19









      Pascal's WagerPascal's Wager

      357315




      357315






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          $a=b+kp$ where $k$ is an integer



          $(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$



          $equiv b^{p^n}pmod{p^{n+1}}$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So simple yet so useful! Thank you!
            $endgroup$
            – Pascal's Wager
            Nov 8 '18 at 23:45



















          0












          $begingroup$

          There is following theorem (Lifting The Exponent Lemma).
          We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.



          Theorem.
          Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:




          • if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;

          • if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.


          Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.



          Your statement is a consequence of this theorem.



          Some links about LTE lemma:



          What can I do with the lifting the exponent lemma?



          https://brilliant.org/wiki/lifting-the-exponent/






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990376%2fa-equiv-b-mod-p-implies-apn-equiv-bpn-mod-pn%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            $a=b+kp$ where $k$ is an integer



            $(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$



            $equiv b^{p^n}pmod{p^{n+1}}$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              So simple yet so useful! Thank you!
              $endgroup$
              – Pascal's Wager
              Nov 8 '18 at 23:45
















            4












            $begingroup$

            $a=b+kp$ where $k$ is an integer



            $(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$



            $equiv b^{p^n}pmod{p^{n+1}}$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              So simple yet so useful! Thank you!
              $endgroup$
              – Pascal's Wager
              Nov 8 '18 at 23:45














            4












            4








            4





            $begingroup$

            $a=b+kp$ where $k$ is an integer



            $(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$



            $equiv b^{p^n}pmod{p^{n+1}}$






            share|cite|improve this answer









            $endgroup$



            $a=b+kp$ where $k$ is an integer



            $(b+kp)^{p^n}=b^{p^n}+binom{p^n}1b^{p^n-1}kp+binom{p^n}2b^{p^n-2}(kp)^{2}+cdots+(kp)^{p^n}$



            $equiv b^{p^n}pmod{p^{n+1}}$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 8 '18 at 18:28









            lab bhattacharjeelab bhattacharjee

            225k15157275




            225k15157275












            • $begingroup$
              So simple yet so useful! Thank you!
              $endgroup$
              – Pascal's Wager
              Nov 8 '18 at 23:45


















            • $begingroup$
              So simple yet so useful! Thank you!
              $endgroup$
              – Pascal's Wager
              Nov 8 '18 at 23:45
















            $begingroup$
            So simple yet so useful! Thank you!
            $endgroup$
            – Pascal's Wager
            Nov 8 '18 at 23:45




            $begingroup$
            So simple yet so useful! Thank you!
            $endgroup$
            – Pascal's Wager
            Nov 8 '18 at 23:45











            0












            $begingroup$

            There is following theorem (Lifting The Exponent Lemma).
            We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.



            Theorem.
            Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:




            • if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;

            • if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.


            Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.



            Your statement is a consequence of this theorem.



            Some links about LTE lemma:



            What can I do with the lifting the exponent lemma?



            https://brilliant.org/wiki/lifting-the-exponent/






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              There is following theorem (Lifting The Exponent Lemma).
              We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.



              Theorem.
              Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:




              • if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;

              • if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.


              Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.



              Your statement is a consequence of this theorem.



              Some links about LTE lemma:



              What can I do with the lifting the exponent lemma?



              https://brilliant.org/wiki/lifting-the-exponent/






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                There is following theorem (Lifting The Exponent Lemma).
                We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.



                Theorem.
                Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:




                • if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;

                • if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.


                Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.



                Your statement is a consequence of this theorem.



                Some links about LTE lemma:



                What can I do with the lifting the exponent lemma?



                https://brilliant.org/wiki/lifting-the-exponent/






                share|cite|improve this answer









                $endgroup$



                There is following theorem (Lifting The Exponent Lemma).
                We will use notation $p^{alpha}||n$ for positive integer $n$, nonnegative integer $alpha$ and prime $p$, which equivalent to $p^{alpha}|n$ and $p^{alpha+1}nmid n$.



                Theorem.
                Let $a,b,n$ be a positive integers and $p^{alpha}||a-b$, $p^{beta}||n$. Then:




                • if $p>2$ and $alphageq 1$ then $p^{alpha+beta}||a^n-b^n$;

                • if $p=2$ and $alphageq 2$ then $2^{alpha+beta}||a^n-b^n$.


                Note. If $p=2$ and $alpha=1$ then $2^{beta+1}||a^n-b^n$.



                Your statement is a consequence of this theorem.



                Some links about LTE lemma:



                What can I do with the lifting the exponent lemma?



                https://brilliant.org/wiki/lifting-the-exponent/







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 12 at 15:00









                richrowrichrow

                17316




                17316






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990376%2fa-equiv-b-mod-p-implies-apn-equiv-bpn-mod-pn%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]