Evaluate $limlimits_{xto infty} frac {x^x-4}{2^x-x^2}$
$begingroup$
Evaluate $$lim_{xto infty} frac {x^x-4}{2^x-x^2}$$
I think it needs to use L'Hospital Rule.
So, I first calculate $frac {d x^x}{dx}=
x^x(ln x+1)$.
And then $$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(ln x+1)}{2^x(ln 2)-2x}$$
It seems that I need to use L'Hospital Rule again. But when I do it, the thing inside the limit becomes more complicated.
How should I do next? Or maybe my way is false?
limits
$endgroup$
add a comment |
$begingroup$
Evaluate $$lim_{xto infty} frac {x^x-4}{2^x-x^2}$$
I think it needs to use L'Hospital Rule.
So, I first calculate $frac {d x^x}{dx}=
x^x(ln x+1)$.
And then $$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(ln x+1)}{2^x(ln 2)-2x}$$
It seems that I need to use L'Hospital Rule again. But when I do it, the thing inside the limit becomes more complicated.
How should I do next? Or maybe my way is false?
limits
$endgroup$
add a comment |
$begingroup$
Evaluate $$lim_{xto infty} frac {x^x-4}{2^x-x^2}$$
I think it needs to use L'Hospital Rule.
So, I first calculate $frac {d x^x}{dx}=
x^x(ln x+1)$.
And then $$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(ln x+1)}{2^x(ln 2)-2x}$$
It seems that I need to use L'Hospital Rule again. But when I do it, the thing inside the limit becomes more complicated.
How should I do next? Or maybe my way is false?
limits
$endgroup$
Evaluate $$lim_{xto infty} frac {x^x-4}{2^x-x^2}$$
I think it needs to use L'Hospital Rule.
So, I first calculate $frac {d x^x}{dx}=
x^x(ln x+1)$.
And then $$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(ln x+1)}{2^x(ln 2)-2x}$$
It seems that I need to use L'Hospital Rule again. But when I do it, the thing inside the limit becomes more complicated.
How should I do next? Or maybe my way is false?
limits
limits
edited Jan 9 at 13:14
user376343
3,4383827
3,4383827
asked Jan 9 at 12:52


MaggieMaggie
938
938
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
$$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(1-frac4{x^x})}{2^x(1-frac{x^2}{2^x})}=lim_{xto infty}Big(frac x2Big)^xcdotBigg[frac{1-frac4{x^x}}{1-frac{x^2}{2^x}}Bigg]toinfty$$The latter tends to $1$, while the former tends to $infty$.
$endgroup$
$begingroup$
How to evaluate $lim_{xto infty} frac {1-frac {4}{x^x}}{1-frac {x^2}{2^x}}$
$endgroup$
– Maggie
Jan 9 at 13:06
2
$begingroup$
Both $frac{4}{x^x}$ and $frac{x^2}{2^x}$ tend to $0$ for large $x$. So it becomes $frac{1}{1} = 1$.
$endgroup$
– KM101
Jan 9 at 13:07
add a comment |
$begingroup$
We can say that $4ll x^x$ and $x^2ll2^x$ as $x$ grows large so
$$lim_{xto infty} frac {x^x-4}{2^x-x^2} sim lim_{xto infty}frac{x^x}{2^x} = lim_{xto infty} (frac{x}{2})^x = infty$$
$endgroup$
add a comment |
$begingroup$
You’re better off avoiding L’Hôpital when solving limits. Keep it simple and divide all the terms by $x^x$:
$$lim_{xto infty} frac {1-frac{4}{x^x}}{frac{2^x}{x^x}-frac{x^2}{x^x}}$$
And now, you can tell that $frac{4}{x^x}$, $frac{2^x}{x^x}$, and $frac{x^2}{x^x}$ all tend to $0$, and since $2^x > x^2$ as $x$ grows large, the denominator tends to $0^+$. Hence, the limit becomes $frac{1}{0^+} = +infty$.
$endgroup$
add a comment |
$begingroup$
Quick & dirty (though correct) method:
$4$ and $x^2$ are neglectible in front of the exponentials. Then the expression is asymptotic to
$$left(frac x2right)^x$$ which grows unboundedly.
$endgroup$
add a comment |
$begingroup$
Hint
for $x$ being sufficiently large ($x>5$) we have
$$2^x-x^2<2^x$$and $$x^x-4>{x^xover 2}$$therefore$${x^x-4over 2^x-x^2}>{1over 2}left({xover 2}right)^xto infty$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067417%2fevaluate-lim-limits-x-to-infty-frac-xx-42x-x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(1-frac4{x^x})}{2^x(1-frac{x^2}{2^x})}=lim_{xto infty}Big(frac x2Big)^xcdotBigg[frac{1-frac4{x^x}}{1-frac{x^2}{2^x}}Bigg]toinfty$$The latter tends to $1$, while the former tends to $infty$.
$endgroup$
$begingroup$
How to evaluate $lim_{xto infty} frac {1-frac {4}{x^x}}{1-frac {x^2}{2^x}}$
$endgroup$
– Maggie
Jan 9 at 13:06
2
$begingroup$
Both $frac{4}{x^x}$ and $frac{x^2}{2^x}$ tend to $0$ for large $x$. So it becomes $frac{1}{1} = 1$.
$endgroup$
– KM101
Jan 9 at 13:07
add a comment |
$begingroup$
$$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(1-frac4{x^x})}{2^x(1-frac{x^2}{2^x})}=lim_{xto infty}Big(frac x2Big)^xcdotBigg[frac{1-frac4{x^x}}{1-frac{x^2}{2^x}}Bigg]toinfty$$The latter tends to $1$, while the former tends to $infty$.
$endgroup$
$begingroup$
How to evaluate $lim_{xto infty} frac {1-frac {4}{x^x}}{1-frac {x^2}{2^x}}$
$endgroup$
– Maggie
Jan 9 at 13:06
2
$begingroup$
Both $frac{4}{x^x}$ and $frac{x^2}{2^x}$ tend to $0$ for large $x$. So it becomes $frac{1}{1} = 1$.
$endgroup$
– KM101
Jan 9 at 13:07
add a comment |
$begingroup$
$$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(1-frac4{x^x})}{2^x(1-frac{x^2}{2^x})}=lim_{xto infty}Big(frac x2Big)^xcdotBigg[frac{1-frac4{x^x}}{1-frac{x^2}{2^x}}Bigg]toinfty$$The latter tends to $1$, while the former tends to $infty$.
$endgroup$
$$lim_{xto infty} frac {x^x-4}{2^x-x^2}=lim_{xto infty} frac {x^x(1-frac4{x^x})}{2^x(1-frac{x^2}{2^x})}=lim_{xto infty}Big(frac x2Big)^xcdotBigg[frac{1-frac4{x^x}}{1-frac{x^2}{2^x}}Bigg]toinfty$$The latter tends to $1$, while the former tends to $infty$.
edited Jan 9 at 13:06
answered Jan 9 at 12:57


Shubham JohriShubham Johri
5,122717
5,122717
$begingroup$
How to evaluate $lim_{xto infty} frac {1-frac {4}{x^x}}{1-frac {x^2}{2^x}}$
$endgroup$
– Maggie
Jan 9 at 13:06
2
$begingroup$
Both $frac{4}{x^x}$ and $frac{x^2}{2^x}$ tend to $0$ for large $x$. So it becomes $frac{1}{1} = 1$.
$endgroup$
– KM101
Jan 9 at 13:07
add a comment |
$begingroup$
How to evaluate $lim_{xto infty} frac {1-frac {4}{x^x}}{1-frac {x^2}{2^x}}$
$endgroup$
– Maggie
Jan 9 at 13:06
2
$begingroup$
Both $frac{4}{x^x}$ and $frac{x^2}{2^x}$ tend to $0$ for large $x$. So it becomes $frac{1}{1} = 1$.
$endgroup$
– KM101
Jan 9 at 13:07
$begingroup$
How to evaluate $lim_{xto infty} frac {1-frac {4}{x^x}}{1-frac {x^2}{2^x}}$
$endgroup$
– Maggie
Jan 9 at 13:06
$begingroup$
How to evaluate $lim_{xto infty} frac {1-frac {4}{x^x}}{1-frac {x^2}{2^x}}$
$endgroup$
– Maggie
Jan 9 at 13:06
2
2
$begingroup$
Both $frac{4}{x^x}$ and $frac{x^2}{2^x}$ tend to $0$ for large $x$. So it becomes $frac{1}{1} = 1$.
$endgroup$
– KM101
Jan 9 at 13:07
$begingroup$
Both $frac{4}{x^x}$ and $frac{x^2}{2^x}$ tend to $0$ for large $x$. So it becomes $frac{1}{1} = 1$.
$endgroup$
– KM101
Jan 9 at 13:07
add a comment |
$begingroup$
We can say that $4ll x^x$ and $x^2ll2^x$ as $x$ grows large so
$$lim_{xto infty} frac {x^x-4}{2^x-x^2} sim lim_{xto infty}frac{x^x}{2^x} = lim_{xto infty} (frac{x}{2})^x = infty$$
$endgroup$
add a comment |
$begingroup$
We can say that $4ll x^x$ and $x^2ll2^x$ as $x$ grows large so
$$lim_{xto infty} frac {x^x-4}{2^x-x^2} sim lim_{xto infty}frac{x^x}{2^x} = lim_{xto infty} (frac{x}{2})^x = infty$$
$endgroup$
add a comment |
$begingroup$
We can say that $4ll x^x$ and $x^2ll2^x$ as $x$ grows large so
$$lim_{xto infty} frac {x^x-4}{2^x-x^2} sim lim_{xto infty}frac{x^x}{2^x} = lim_{xto infty} (frac{x}{2})^x = infty$$
$endgroup$
We can say that $4ll x^x$ and $x^2ll2^x$ as $x$ grows large so
$$lim_{xto infty} frac {x^x-4}{2^x-x^2} sim lim_{xto infty}frac{x^x}{2^x} = lim_{xto infty} (frac{x}{2})^x = infty$$
edited Jan 9 at 13:01
John Doe
11.1k11238
11.1k11238
answered Jan 9 at 12:59


Ahmad BazziAhmad Bazzi
8,0362724
8,0362724
add a comment |
add a comment |
$begingroup$
You’re better off avoiding L’Hôpital when solving limits. Keep it simple and divide all the terms by $x^x$:
$$lim_{xto infty} frac {1-frac{4}{x^x}}{frac{2^x}{x^x}-frac{x^2}{x^x}}$$
And now, you can tell that $frac{4}{x^x}$, $frac{2^x}{x^x}$, and $frac{x^2}{x^x}$ all tend to $0$, and since $2^x > x^2$ as $x$ grows large, the denominator tends to $0^+$. Hence, the limit becomes $frac{1}{0^+} = +infty$.
$endgroup$
add a comment |
$begingroup$
You’re better off avoiding L’Hôpital when solving limits. Keep it simple and divide all the terms by $x^x$:
$$lim_{xto infty} frac {1-frac{4}{x^x}}{frac{2^x}{x^x}-frac{x^2}{x^x}}$$
And now, you can tell that $frac{4}{x^x}$, $frac{2^x}{x^x}$, and $frac{x^2}{x^x}$ all tend to $0$, and since $2^x > x^2$ as $x$ grows large, the denominator tends to $0^+$. Hence, the limit becomes $frac{1}{0^+} = +infty$.
$endgroup$
add a comment |
$begingroup$
You’re better off avoiding L’Hôpital when solving limits. Keep it simple and divide all the terms by $x^x$:
$$lim_{xto infty} frac {1-frac{4}{x^x}}{frac{2^x}{x^x}-frac{x^2}{x^x}}$$
And now, you can tell that $frac{4}{x^x}$, $frac{2^x}{x^x}$, and $frac{x^2}{x^x}$ all tend to $0$, and since $2^x > x^2$ as $x$ grows large, the denominator tends to $0^+$. Hence, the limit becomes $frac{1}{0^+} = +infty$.
$endgroup$
You’re better off avoiding L’Hôpital when solving limits. Keep it simple and divide all the terms by $x^x$:
$$lim_{xto infty} frac {1-frac{4}{x^x}}{frac{2^x}{x^x}-frac{x^2}{x^x}}$$
And now, you can tell that $frac{4}{x^x}$, $frac{2^x}{x^x}$, and $frac{x^2}{x^x}$ all tend to $0$, and since $2^x > x^2$ as $x$ grows large, the denominator tends to $0^+$. Hence, the limit becomes $frac{1}{0^+} = +infty$.
answered Jan 9 at 13:00
KM101KM101
5,9481524
5,9481524
add a comment |
add a comment |
$begingroup$
Quick & dirty (though correct) method:
$4$ and $x^2$ are neglectible in front of the exponentials. Then the expression is asymptotic to
$$left(frac x2right)^x$$ which grows unboundedly.
$endgroup$
add a comment |
$begingroup$
Quick & dirty (though correct) method:
$4$ and $x^2$ are neglectible in front of the exponentials. Then the expression is asymptotic to
$$left(frac x2right)^x$$ which grows unboundedly.
$endgroup$
add a comment |
$begingroup$
Quick & dirty (though correct) method:
$4$ and $x^2$ are neglectible in front of the exponentials. Then the expression is asymptotic to
$$left(frac x2right)^x$$ which grows unboundedly.
$endgroup$
Quick & dirty (though correct) method:
$4$ and $x^2$ are neglectible in front of the exponentials. Then the expression is asymptotic to
$$left(frac x2right)^x$$ which grows unboundedly.
edited Jan 9 at 13:07
answered Jan 9 at 12:59
Yves DaoustYves Daoust
126k672226
126k672226
add a comment |
add a comment |
$begingroup$
Hint
for $x$ being sufficiently large ($x>5$) we have
$$2^x-x^2<2^x$$and $$x^x-4>{x^xover 2}$$therefore$${x^x-4over 2^x-x^2}>{1over 2}left({xover 2}right)^xto infty$$
$endgroup$
add a comment |
$begingroup$
Hint
for $x$ being sufficiently large ($x>5$) we have
$$2^x-x^2<2^x$$and $$x^x-4>{x^xover 2}$$therefore$${x^x-4over 2^x-x^2}>{1over 2}left({xover 2}right)^xto infty$$
$endgroup$
add a comment |
$begingroup$
Hint
for $x$ being sufficiently large ($x>5$) we have
$$2^x-x^2<2^x$$and $$x^x-4>{x^xover 2}$$therefore$${x^x-4over 2^x-x^2}>{1over 2}left({xover 2}right)^xto infty$$
$endgroup$
Hint
for $x$ being sufficiently large ($x>5$) we have
$$2^x-x^2<2^x$$and $$x^x-4>{x^xover 2}$$therefore$${x^x-4over 2^x-x^2}>{1over 2}left({xover 2}right)^xto infty$$
answered Jan 9 at 16:05


Mostafa AyazMostafa Ayaz
15.4k3939
15.4k3939
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067417%2fevaluate-lim-limits-x-to-infty-frac-xx-42x-x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown