Expression for the inverse of Euler's totient function $phi^{-1}$
$begingroup$
I have to demonstrate that $$phi^{-1}(n)= prod_{p|n}(1-p)$$ where $phi(n)$ is the Euler's totient function.
I know that I can write $phi$ in terms of the Mobius function $mu$ as$$phi(n)= sum_{n|d} mu(d) cdot left(frac{n}{d}right)$$
and I tried to substitute this in the definition of Dirichlet's inverse $$f^{-1}(n)=- frac{1}{f(1)} sum_{d|n \d<n} f left(frac{n}{d}right)f^{-1}(d) $$ but I can't find a solution.
Can anyone give me a hint?
number-theory totient-function dirichlet-convolution
$endgroup$
add a comment |
$begingroup$
I have to demonstrate that $$phi^{-1}(n)= prod_{p|n}(1-p)$$ where $phi(n)$ is the Euler's totient function.
I know that I can write $phi$ in terms of the Mobius function $mu$ as$$phi(n)= sum_{n|d} mu(d) cdot left(frac{n}{d}right)$$
and I tried to substitute this in the definition of Dirichlet's inverse $$f^{-1}(n)=- frac{1}{f(1)} sum_{d|n \d<n} f left(frac{n}{d}right)f^{-1}(d) $$ but I can't find a solution.
Can anyone give me a hint?
number-theory totient-function dirichlet-convolution
$endgroup$
add a comment |
$begingroup$
I have to demonstrate that $$phi^{-1}(n)= prod_{p|n}(1-p)$$ where $phi(n)$ is the Euler's totient function.
I know that I can write $phi$ in terms of the Mobius function $mu$ as$$phi(n)= sum_{n|d} mu(d) cdot left(frac{n}{d}right)$$
and I tried to substitute this in the definition of Dirichlet's inverse $$f^{-1}(n)=- frac{1}{f(1)} sum_{d|n \d<n} f left(frac{n}{d}right)f^{-1}(d) $$ but I can't find a solution.
Can anyone give me a hint?
number-theory totient-function dirichlet-convolution
$endgroup$
I have to demonstrate that $$phi^{-1}(n)= prod_{p|n}(1-p)$$ where $phi(n)$ is the Euler's totient function.
I know that I can write $phi$ in terms of the Mobius function $mu$ as$$phi(n)= sum_{n|d} mu(d) cdot left(frac{n}{d}right)$$
and I tried to substitute this in the definition of Dirichlet's inverse $$f^{-1}(n)=- frac{1}{f(1)} sum_{d|n \d<n} f left(frac{n}{d}right)f^{-1}(d) $$ but I can't find a solution.
Can anyone give me a hint?
number-theory totient-function dirichlet-convolution
number-theory totient-function dirichlet-convolution
asked Jan 14 at 16:25
Phi_24Phi_24
1938
1938
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $phi(n)$ is multiplicative, i.e., satisfies $phi(nm) = phi(n)phi(m)$ for all $m,n$ with
$gcd(n,m) = 1$,
it follows from $phi(p^k)= p^{k-1}(p-1)$ that
$$sum_{d | n} phi(d) = n, qquad phi(n) = sum_{d | n} mu(d) frac{n}{d}$$
by the Moebius inversion formula. Thus
$$phi^{-1}(n) = sum_{d | n} d mu(d)$$
by the definition of the Dirichlet inverse. But we have, for every multiplicative arithmetic function $f$ that
$$
sum_{dmid n}mu(d)f(d)=prod_{pmid n}(1-f(p)).
$$
Just check this for prime powers and use the multiplicativity of $f$. Now take $f=id$ to obtain
$$phi^{-1}(n)= prod_{p|n}(1-p).$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073401%2fexpression-for-the-inverse-of-eulers-totient-function-phi-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $phi(n)$ is multiplicative, i.e., satisfies $phi(nm) = phi(n)phi(m)$ for all $m,n$ with
$gcd(n,m) = 1$,
it follows from $phi(p^k)= p^{k-1}(p-1)$ that
$$sum_{d | n} phi(d) = n, qquad phi(n) = sum_{d | n} mu(d) frac{n}{d}$$
by the Moebius inversion formula. Thus
$$phi^{-1}(n) = sum_{d | n} d mu(d)$$
by the definition of the Dirichlet inverse. But we have, for every multiplicative arithmetic function $f$ that
$$
sum_{dmid n}mu(d)f(d)=prod_{pmid n}(1-f(p)).
$$
Just check this for prime powers and use the multiplicativity of $f$. Now take $f=id$ to obtain
$$phi^{-1}(n)= prod_{p|n}(1-p).$$
$endgroup$
add a comment |
$begingroup$
Since $phi(n)$ is multiplicative, i.e., satisfies $phi(nm) = phi(n)phi(m)$ for all $m,n$ with
$gcd(n,m) = 1$,
it follows from $phi(p^k)= p^{k-1}(p-1)$ that
$$sum_{d | n} phi(d) = n, qquad phi(n) = sum_{d | n} mu(d) frac{n}{d}$$
by the Moebius inversion formula. Thus
$$phi^{-1}(n) = sum_{d | n} d mu(d)$$
by the definition of the Dirichlet inverse. But we have, for every multiplicative arithmetic function $f$ that
$$
sum_{dmid n}mu(d)f(d)=prod_{pmid n}(1-f(p)).
$$
Just check this for prime powers and use the multiplicativity of $f$. Now take $f=id$ to obtain
$$phi^{-1}(n)= prod_{p|n}(1-p).$$
$endgroup$
add a comment |
$begingroup$
Since $phi(n)$ is multiplicative, i.e., satisfies $phi(nm) = phi(n)phi(m)$ for all $m,n$ with
$gcd(n,m) = 1$,
it follows from $phi(p^k)= p^{k-1}(p-1)$ that
$$sum_{d | n} phi(d) = n, qquad phi(n) = sum_{d | n} mu(d) frac{n}{d}$$
by the Moebius inversion formula. Thus
$$phi^{-1}(n) = sum_{d | n} d mu(d)$$
by the definition of the Dirichlet inverse. But we have, for every multiplicative arithmetic function $f$ that
$$
sum_{dmid n}mu(d)f(d)=prod_{pmid n}(1-f(p)).
$$
Just check this for prime powers and use the multiplicativity of $f$. Now take $f=id$ to obtain
$$phi^{-1}(n)= prod_{p|n}(1-p).$$
$endgroup$
Since $phi(n)$ is multiplicative, i.e., satisfies $phi(nm) = phi(n)phi(m)$ for all $m,n$ with
$gcd(n,m) = 1$,
it follows from $phi(p^k)= p^{k-1}(p-1)$ that
$$sum_{d | n} phi(d) = n, qquad phi(n) = sum_{d | n} mu(d) frac{n}{d}$$
by the Moebius inversion formula. Thus
$$phi^{-1}(n) = sum_{d | n} d mu(d)$$
by the definition of the Dirichlet inverse. But we have, for every multiplicative arithmetic function $f$ that
$$
sum_{dmid n}mu(d)f(d)=prod_{pmid n}(1-f(p)).
$$
Just check this for prime powers and use the multiplicativity of $f$. Now take $f=id$ to obtain
$$phi^{-1}(n)= prod_{p|n}(1-p).$$
edited Jan 14 at 19:58
answered Jan 14 at 19:47
Dietrich BurdeDietrich Burde
79.3k647103
79.3k647103
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3073401%2fexpression-for-the-inverse-of-eulers-totient-function-phi-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown