Fourier transform of a convolution of measures
$begingroup$
Let $mathbb{T}$ be the 1-torus, let $mathcal{B}$ be the Borel subsets of $mathbb{T}$ and let $frak{M}(mathbb{T})$ be the set of the Borel complex measures of $mathbb{T}$. If $mu,tauinfrak{M}(mathbb{T})$, define:
$$mu*tau:mathcal{B}tomathbb{C}, Amapstofrac{1}{2pi}int_{mathbb{T}timesmathbb{T}}chi_{A}(x+y)operatorname{d}(muotimestau)(x,y),$$
so that $mu*tauinfrak{M}(mathbb{T}).$
Define the Fourier transform as:
$$mathcal{F}: {frak{M}} (mathbb{T}) to l^infty(mathbb{Z}), mu mapsto left(nmapstofrac{1}{2pi}int_{mathbb{T}}e^{-int}operatorname{d}mu(t)right).$$
How can we prove that:
$$forall mu,tauin {frak{M}}(mathbb{T}), mathcal{F}(mu*tau)=mathcal{F}(mu)mathcal{F}(tau)?$$
I know how to prove the corresponding result for $L^1(mathbb{T})$ functions, i.e. via Fubini theorem, but actually I've some trouble to prove the corresponding result for measure...
Any help?
measure-theory fourier-transform
$endgroup$
add a comment |
$begingroup$
Let $mathbb{T}$ be the 1-torus, let $mathcal{B}$ be the Borel subsets of $mathbb{T}$ and let $frak{M}(mathbb{T})$ be the set of the Borel complex measures of $mathbb{T}$. If $mu,tauinfrak{M}(mathbb{T})$, define:
$$mu*tau:mathcal{B}tomathbb{C}, Amapstofrac{1}{2pi}int_{mathbb{T}timesmathbb{T}}chi_{A}(x+y)operatorname{d}(muotimestau)(x,y),$$
so that $mu*tauinfrak{M}(mathbb{T}).$
Define the Fourier transform as:
$$mathcal{F}: {frak{M}} (mathbb{T}) to l^infty(mathbb{Z}), mu mapsto left(nmapstofrac{1}{2pi}int_{mathbb{T}}e^{-int}operatorname{d}mu(t)right).$$
How can we prove that:
$$forall mu,tauin {frak{M}}(mathbb{T}), mathcal{F}(mu*tau)=mathcal{F}(mu)mathcal{F}(tau)?$$
I know how to prove the corresponding result for $L^1(mathbb{T})$ functions, i.e. via Fubini theorem, but actually I've some trouble to prove the corresponding result for measure...
Any help?
measure-theory fourier-transform
$endgroup$
add a comment |
$begingroup$
Let $mathbb{T}$ be the 1-torus, let $mathcal{B}$ be the Borel subsets of $mathbb{T}$ and let $frak{M}(mathbb{T})$ be the set of the Borel complex measures of $mathbb{T}$. If $mu,tauinfrak{M}(mathbb{T})$, define:
$$mu*tau:mathcal{B}tomathbb{C}, Amapstofrac{1}{2pi}int_{mathbb{T}timesmathbb{T}}chi_{A}(x+y)operatorname{d}(muotimestau)(x,y),$$
so that $mu*tauinfrak{M}(mathbb{T}).$
Define the Fourier transform as:
$$mathcal{F}: {frak{M}} (mathbb{T}) to l^infty(mathbb{Z}), mu mapsto left(nmapstofrac{1}{2pi}int_{mathbb{T}}e^{-int}operatorname{d}mu(t)right).$$
How can we prove that:
$$forall mu,tauin {frak{M}}(mathbb{T}), mathcal{F}(mu*tau)=mathcal{F}(mu)mathcal{F}(tau)?$$
I know how to prove the corresponding result for $L^1(mathbb{T})$ functions, i.e. via Fubini theorem, but actually I've some trouble to prove the corresponding result for measure...
Any help?
measure-theory fourier-transform
$endgroup$
Let $mathbb{T}$ be the 1-torus, let $mathcal{B}$ be the Borel subsets of $mathbb{T}$ and let $frak{M}(mathbb{T})$ be the set of the Borel complex measures of $mathbb{T}$. If $mu,tauinfrak{M}(mathbb{T})$, define:
$$mu*tau:mathcal{B}tomathbb{C}, Amapstofrac{1}{2pi}int_{mathbb{T}timesmathbb{T}}chi_{A}(x+y)operatorname{d}(muotimestau)(x,y),$$
so that $mu*tauinfrak{M}(mathbb{T}).$
Define the Fourier transform as:
$$mathcal{F}: {frak{M}} (mathbb{T}) to l^infty(mathbb{Z}), mu mapsto left(nmapstofrac{1}{2pi}int_{mathbb{T}}e^{-int}operatorname{d}mu(t)right).$$
How can we prove that:
$$forall mu,tauin {frak{M}}(mathbb{T}), mathcal{F}(mu*tau)=mathcal{F}(mu)mathcal{F}(tau)?$$
I know how to prove the corresponding result for $L^1(mathbb{T})$ functions, i.e. via Fubini theorem, but actually I've some trouble to prove the corresponding result for measure...
Any help?
measure-theory fourier-transform
measure-theory fourier-transform
asked Jan 10 at 20:53


BobBob
1,5381625
1,5381625
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Begin by noting that
$$
int_mathbb{T} fd(mu*tau) = int_{mathbb{T}timesmathbb{T}}f(x+y)d(muotimestau)(x,y)
$$ for all bounded measurable $f$. Hence
$$begin{eqnarray}
mathcal{F}(mu*tau)_n &= &int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}d(muotimestau)(x,y)\
&=&int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}dmu(x)dtau(y)\
&=&int_{mathbb{T}}left[int_mathbb{T}e^{-inx}dmu(x)right]e^{-iny}dtau(y)\
&=&mathcal{F}(mu)_nmathcal{F}(tau)_n.
end{eqnarray}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069158%2ffourier-transform-of-a-convolution-of-measures%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Begin by noting that
$$
int_mathbb{T} fd(mu*tau) = int_{mathbb{T}timesmathbb{T}}f(x+y)d(muotimestau)(x,y)
$$ for all bounded measurable $f$. Hence
$$begin{eqnarray}
mathcal{F}(mu*tau)_n &= &int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}d(muotimestau)(x,y)\
&=&int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}dmu(x)dtau(y)\
&=&int_{mathbb{T}}left[int_mathbb{T}e^{-inx}dmu(x)right]e^{-iny}dtau(y)\
&=&mathcal{F}(mu)_nmathcal{F}(tau)_n.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Begin by noting that
$$
int_mathbb{T} fd(mu*tau) = int_{mathbb{T}timesmathbb{T}}f(x+y)d(muotimestau)(x,y)
$$ for all bounded measurable $f$. Hence
$$begin{eqnarray}
mathcal{F}(mu*tau)_n &= &int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}d(muotimestau)(x,y)\
&=&int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}dmu(x)dtau(y)\
&=&int_{mathbb{T}}left[int_mathbb{T}e^{-inx}dmu(x)right]e^{-iny}dtau(y)\
&=&mathcal{F}(mu)_nmathcal{F}(tau)_n.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Begin by noting that
$$
int_mathbb{T} fd(mu*tau) = int_{mathbb{T}timesmathbb{T}}f(x+y)d(muotimestau)(x,y)
$$ for all bounded measurable $f$. Hence
$$begin{eqnarray}
mathcal{F}(mu*tau)_n &= &int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}d(muotimestau)(x,y)\
&=&int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}dmu(x)dtau(y)\
&=&int_{mathbb{T}}left[int_mathbb{T}e^{-inx}dmu(x)right]e^{-iny}dtau(y)\
&=&mathcal{F}(mu)_nmathcal{F}(tau)_n.
end{eqnarray}$$
$endgroup$
Begin by noting that
$$
int_mathbb{T} fd(mu*tau) = int_{mathbb{T}timesmathbb{T}}f(x+y)d(muotimestau)(x,y)
$$ for all bounded measurable $f$. Hence
$$begin{eqnarray}
mathcal{F}(mu*tau)_n &= &int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}d(muotimestau)(x,y)\
&=&int_{mathbb{T}timesmathbb{T}}e^{-in(x+y)}dmu(x)dtau(y)\
&=&int_{mathbb{T}}left[int_mathbb{T}e^{-inx}dmu(x)right]e^{-iny}dtau(y)\
&=&mathcal{F}(mu)_nmathcal{F}(tau)_n.
end{eqnarray}$$
answered Jan 10 at 21:08
SongSong
11.8k628
11.8k628
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069158%2ffourier-transform-of-a-convolution-of-measures%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown