How to find the coordinate vector respect to a matrix basis?
$begingroup$
I know how to find the coordinate vector respect to a vector matrix. However, in my textbook, I see the following problem, which asks to find the coordinate vector of M respect to a matrix basis:
$M=begin{bmatrix}1 & 1\0& 1end{bmatrix}in Mat(2,2,mathbb{Q})$
$mathcal{B} _ { 1 } = left{ A = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right] , B = left[ begin{array} { c c } { 0 } & { 1 } \ { 0 } & { 0 } end{array} right] , C = left[ begin{array} { c c } { 0 } & { 0 } \ { 1 } & { 0 } end{array} right] , D = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { - 1 } end{array} right] right}$
How can I proceed? Can I explicit the matrix components as column vectors?
linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
I know how to find the coordinate vector respect to a vector matrix. However, in my textbook, I see the following problem, which asks to find the coordinate vector of M respect to a matrix basis:
$M=begin{bmatrix}1 & 1\0& 1end{bmatrix}in Mat(2,2,mathbb{Q})$
$mathcal{B} _ { 1 } = left{ A = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right] , B = left[ begin{array} { c c } { 0 } & { 1 } \ { 0 } & { 0 } end{array} right] , C = left[ begin{array} { c c } { 0 } & { 0 } \ { 1 } & { 0 } end{array} right] , D = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { - 1 } end{array} right] right}$
How can I proceed? Can I explicit the matrix components as column vectors?
linear-algebra matrices
$endgroup$
add a comment |
$begingroup$
I know how to find the coordinate vector respect to a vector matrix. However, in my textbook, I see the following problem, which asks to find the coordinate vector of M respect to a matrix basis:
$M=begin{bmatrix}1 & 1\0& 1end{bmatrix}in Mat(2,2,mathbb{Q})$
$mathcal{B} _ { 1 } = left{ A = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right] , B = left[ begin{array} { c c } { 0 } & { 1 } \ { 0 } & { 0 } end{array} right] , C = left[ begin{array} { c c } { 0 } & { 0 } \ { 1 } & { 0 } end{array} right] , D = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { - 1 } end{array} right] right}$
How can I proceed? Can I explicit the matrix components as column vectors?
linear-algebra matrices
$endgroup$
I know how to find the coordinate vector respect to a vector matrix. However, in my textbook, I see the following problem, which asks to find the coordinate vector of M respect to a matrix basis:
$M=begin{bmatrix}1 & 1\0& 1end{bmatrix}in Mat(2,2,mathbb{Q})$
$mathcal{B} _ { 1 } = left{ A = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right] , B = left[ begin{array} { c c } { 0 } & { 1 } \ { 0 } & { 0 } end{array} right] , C = left[ begin{array} { c c } { 0 } & { 0 } \ { 1 } & { 0 } end{array} right] , D = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { - 1 } end{array} right] right}$
How can I proceed? Can I explicit the matrix components as column vectors?
linear-algebra matrices
linear-algebra matrices
asked Jan 12 at 12:55


KevinKevin
13311
13311
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Start by setting up the equation you want to solve:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$
Next, simplify:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$
Then turn into a system of equations:
begin{align*}
1 &= a + d \
1 &= b \
0 &= c \
1 &= a - d.
end{align*}
Finally, solve!
$endgroup$
$begingroup$
General approach is OK but $(cdot)_{21}=-c$, not $c$.
$endgroup$
– obareey
Jan 12 at 17:41
$begingroup$
@obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
$endgroup$
– Theo Bendit
Jan 12 at 22:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070868%2fhow-to-find-the-coordinate-vector-respect-to-a-matrix-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Start by setting up the equation you want to solve:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$
Next, simplify:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$
Then turn into a system of equations:
begin{align*}
1 &= a + d \
1 &= b \
0 &= c \
1 &= a - d.
end{align*}
Finally, solve!
$endgroup$
$begingroup$
General approach is OK but $(cdot)_{21}=-c$, not $c$.
$endgroup$
– obareey
Jan 12 at 17:41
$begingroup$
@obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
$endgroup$
– Theo Bendit
Jan 12 at 22:45
add a comment |
$begingroup$
Start by setting up the equation you want to solve:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$
Next, simplify:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$
Then turn into a system of equations:
begin{align*}
1 &= a + d \
1 &= b \
0 &= c \
1 &= a - d.
end{align*}
Finally, solve!
$endgroup$
$begingroup$
General approach is OK but $(cdot)_{21}=-c$, not $c$.
$endgroup$
– obareey
Jan 12 at 17:41
$begingroup$
@obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
$endgroup$
– Theo Bendit
Jan 12 at 22:45
add a comment |
$begingroup$
Start by setting up the equation you want to solve:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$
Next, simplify:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$
Then turn into a system of equations:
begin{align*}
1 &= a + d \
1 &= b \
0 &= c \
1 &= a - d.
end{align*}
Finally, solve!
$endgroup$
Start by setting up the equation you want to solve:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$
Next, simplify:
$$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$
Then turn into a system of equations:
begin{align*}
1 &= a + d \
1 &= b \
0 &= c \
1 &= a - d.
end{align*}
Finally, solve!
edited Jan 12 at 22:44
answered Jan 12 at 14:06
Theo BenditTheo Bendit
18.1k12152
18.1k12152
$begingroup$
General approach is OK but $(cdot)_{21}=-c$, not $c$.
$endgroup$
– obareey
Jan 12 at 17:41
$begingroup$
@obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
$endgroup$
– Theo Bendit
Jan 12 at 22:45
add a comment |
$begingroup$
General approach is OK but $(cdot)_{21}=-c$, not $c$.
$endgroup$
– obareey
Jan 12 at 17:41
$begingroup$
@obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
$endgroup$
– Theo Bendit
Jan 12 at 22:45
$begingroup$
General approach is OK but $(cdot)_{21}=-c$, not $c$.
$endgroup$
– obareey
Jan 12 at 17:41
$begingroup$
General approach is OK but $(cdot)_{21}=-c$, not $c$.
$endgroup$
– obareey
Jan 12 at 17:41
$begingroup$
@obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
$endgroup$
– Theo Bendit
Jan 12 at 22:45
$begingroup$
@obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
$endgroup$
– Theo Bendit
Jan 12 at 22:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070868%2fhow-to-find-the-coordinate-vector-respect-to-a-matrix-basis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown