How to find the coordinate vector respect to a matrix basis?












0












$begingroup$


I know how to find the coordinate vector respect to a vector matrix. However, in my textbook, I see the following problem, which asks to find the coordinate vector of M respect to a matrix basis:



$M=begin{bmatrix}1 & 1\0& 1end{bmatrix}in Mat(2,2,mathbb{Q})$



$mathcal{B} _ { 1 } = left{ A = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right] , B = left[ begin{array} { c c } { 0 } & { 1 } \ { 0 } & { 0 } end{array} right] , C = left[ begin{array} { c c } { 0 } & { 0 } \ { 1 } & { 0 } end{array} right] , D = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { - 1 } end{array} right] right}$



How can I proceed? Can I explicit the matrix components as column vectors?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I know how to find the coordinate vector respect to a vector matrix. However, in my textbook, I see the following problem, which asks to find the coordinate vector of M respect to a matrix basis:



    $M=begin{bmatrix}1 & 1\0& 1end{bmatrix}in Mat(2,2,mathbb{Q})$



    $mathcal{B} _ { 1 } = left{ A = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right] , B = left[ begin{array} { c c } { 0 } & { 1 } \ { 0 } & { 0 } end{array} right] , C = left[ begin{array} { c c } { 0 } & { 0 } \ { 1 } & { 0 } end{array} right] , D = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { - 1 } end{array} right] right}$



    How can I proceed? Can I explicit the matrix components as column vectors?










    share|cite|improve this question









    $endgroup$















      0












      0








      0


      1



      $begingroup$


      I know how to find the coordinate vector respect to a vector matrix. However, in my textbook, I see the following problem, which asks to find the coordinate vector of M respect to a matrix basis:



      $M=begin{bmatrix}1 & 1\0& 1end{bmatrix}in Mat(2,2,mathbb{Q})$



      $mathcal{B} _ { 1 } = left{ A = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right] , B = left[ begin{array} { c c } { 0 } & { 1 } \ { 0 } & { 0 } end{array} right] , C = left[ begin{array} { c c } { 0 } & { 0 } \ { 1 } & { 0 } end{array} right] , D = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { - 1 } end{array} right] right}$



      How can I proceed? Can I explicit the matrix components as column vectors?










      share|cite|improve this question









      $endgroup$




      I know how to find the coordinate vector respect to a vector matrix. However, in my textbook, I see the following problem, which asks to find the coordinate vector of M respect to a matrix basis:



      $M=begin{bmatrix}1 & 1\0& 1end{bmatrix}in Mat(2,2,mathbb{Q})$



      $mathcal{B} _ { 1 } = left{ A = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { 1 } end{array} right] , B = left[ begin{array} { c c } { 0 } & { 1 } \ { 0 } & { 0 } end{array} right] , C = left[ begin{array} { c c } { 0 } & { 0 } \ { 1 } & { 0 } end{array} right] , D = left[ begin{array} { c c } { 1 } & { 0 } \ { 0 } & { - 1 } end{array} right] right}$



      How can I proceed? Can I explicit the matrix components as column vectors?







      linear-algebra matrices






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 12 at 12:55









      KevinKevin

      13311




      13311






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Start by setting up the equation you want to solve:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$



          Next, simplify:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$



          Then turn into a system of equations:



          begin{align*}
          1 &= a + d \
          1 &= b \
          0 &= c \
          1 &= a - d.
          end{align*}



          Finally, solve!






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            General approach is OK but $(cdot)_{21}=-c$, not $c$.
            $endgroup$
            – obareey
            Jan 12 at 17:41










          • $begingroup$
            @obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
            $endgroup$
            – Theo Bendit
            Jan 12 at 22:45











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070868%2fhow-to-find-the-coordinate-vector-respect-to-a-matrix-basis%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Start by setting up the equation you want to solve:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$



          Next, simplify:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$



          Then turn into a system of equations:



          begin{align*}
          1 &= a + d \
          1 &= b \
          0 &= c \
          1 &= a - d.
          end{align*}



          Finally, solve!






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            General approach is OK but $(cdot)_{21}=-c$, not $c$.
            $endgroup$
            – obareey
            Jan 12 at 17:41










          • $begingroup$
            @obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
            $endgroup$
            – Theo Bendit
            Jan 12 at 22:45
















          1












          $begingroup$

          Start by setting up the equation you want to solve:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$



          Next, simplify:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$



          Then turn into a system of equations:



          begin{align*}
          1 &= a + d \
          1 &= b \
          0 &= c \
          1 &= a - d.
          end{align*}



          Finally, solve!






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            General approach is OK but $(cdot)_{21}=-c$, not $c$.
            $endgroup$
            – obareey
            Jan 12 at 17:41










          • $begingroup$
            @obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
            $endgroup$
            – Theo Bendit
            Jan 12 at 22:45














          1












          1








          1





          $begingroup$

          Start by setting up the equation you want to solve:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$



          Next, simplify:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$



          Then turn into a system of equations:



          begin{align*}
          1 &= a + d \
          1 &= b \
          0 &= c \
          1 &= a - d.
          end{align*}



          Finally, solve!






          share|cite|improve this answer











          $endgroup$



          Start by setting up the equation you want to solve:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = abegin{bmatrix} 1 & 0 \ 0 & 1 end{bmatrix} + bbegin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix} + cbegin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix} + d begin{bmatrix} 1 & 0 \ 0 & -1 end{bmatrix}.$$



          Next, simplify:



          $$begin{bmatrix} 1 & 1 \ 0 & 1 end{bmatrix} = begin{bmatrix} a + d & b \ c & a - d end{bmatrix}.$$



          Then turn into a system of equations:



          begin{align*}
          1 &= a + d \
          1 &= b \
          0 &= c \
          1 &= a - d.
          end{align*}



          Finally, solve!







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 12 at 22:44

























          answered Jan 12 at 14:06









          Theo BenditTheo Bendit

          18.1k12152




          18.1k12152












          • $begingroup$
            General approach is OK but $(cdot)_{21}=-c$, not $c$.
            $endgroup$
            – obareey
            Jan 12 at 17:41










          • $begingroup$
            @obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
            $endgroup$
            – Theo Bendit
            Jan 12 at 22:45


















          • $begingroup$
            General approach is OK but $(cdot)_{21}=-c$, not $c$.
            $endgroup$
            – obareey
            Jan 12 at 17:41










          • $begingroup$
            @obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
            $endgroup$
            – Theo Bendit
            Jan 12 at 22:45
















          $begingroup$
          General approach is OK but $(cdot)_{21}=-c$, not $c$.
          $endgroup$
          – obareey
          Jan 12 at 17:41




          $begingroup$
          General approach is OK but $(cdot)_{21}=-c$, not $c$.
          $endgroup$
          – obareey
          Jan 12 at 17:41












          $begingroup$
          @obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
          $endgroup$
          – Theo Bendit
          Jan 12 at 22:45




          $begingroup$
          @obareey Actually, I just put down the wrong matrix, but thanks for letting me know.
          $endgroup$
          – Theo Bendit
          Jan 12 at 22:45


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070868%2fhow-to-find-the-coordinate-vector-respect-to-a-matrix-basis%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith