If $int_0^infty f(x),dx$ exists, then there exists some function $g$ such that $f=o(g)$ and $int_0^infty...












9












$begingroup$


If $f$ is a positive function such that $int_0^infty f(x),mathrm dx$ converges, show that there is another function $g$ such that $lim_{x to infty} frac {g(x)} {f(x)} = infty$ and $int_0^infty g(x),mathrm dx$ also converges.










share|cite|improve this question











$endgroup$

















    9












    $begingroup$


    If $f$ is a positive function such that $int_0^infty f(x),mathrm dx$ converges, show that there is another function $g$ such that $lim_{x to infty} frac {g(x)} {f(x)} = infty$ and $int_0^infty g(x),mathrm dx$ also converges.










    share|cite|improve this question











    $endgroup$















      9












      9








      9


      7



      $begingroup$


      If $f$ is a positive function such that $int_0^infty f(x),mathrm dx$ converges, show that there is another function $g$ such that $lim_{x to infty} frac {g(x)} {f(x)} = infty$ and $int_0^infty g(x),mathrm dx$ also converges.










      share|cite|improve this question











      $endgroup$




      If $f$ is a positive function such that $int_0^infty f(x),mathrm dx$ converges, show that there is another function $g$ such that $lim_{x to infty} frac {g(x)} {f(x)} = infty$ and $int_0^infty g(x),mathrm dx$ also converges.







      integration improper-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 11 at 21:19









      Did

      248k23223460




      248k23223460










      asked May 25 '13 at 15:41









      shmuelshmuel

      482




      482






















          1 Answer
          1






          active

          oldest

          votes


















          10












          $begingroup$

          For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:





          • $int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,


          • $f(x)=o(g(x))$ when $xtoinfty$.


          These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.





          Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:56










          • $begingroup$
            How to get $2sqrt{F(0)}$? Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:57








          • 1




            $begingroup$
            Calculate the derivative of the square root of F
            $endgroup$
            – Bananach
            Jul 31 '16 at 21:59










          • $begingroup$
            @Bananach I see. Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 22:05











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f402154%2fif-int-0-infty-fx-dx-exists-then-there-exists-some-function-g-such-tha%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          10












          $begingroup$

          For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:





          • $int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,


          • $f(x)=o(g(x))$ when $xtoinfty$.


          These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.





          Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:56










          • $begingroup$
            How to get $2sqrt{F(0)}$? Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:57








          • 1




            $begingroup$
            Calculate the derivative of the square root of F
            $endgroup$
            – Bananach
            Jul 31 '16 at 21:59










          • $begingroup$
            @Bananach I see. Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 22:05
















          10












          $begingroup$

          For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:





          • $int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,


          • $f(x)=o(g(x))$ when $xtoinfty$.


          These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.





          Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:56










          • $begingroup$
            How to get $2sqrt{F(0)}$? Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:57








          • 1




            $begingroup$
            Calculate the derivative of the square root of F
            $endgroup$
            – Bananach
            Jul 31 '16 at 21:59










          • $begingroup$
            @Bananach I see. Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 22:05














          10












          10








          10





          $begingroup$

          For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:





          • $int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,


          • $f(x)=o(g(x))$ when $xtoinfty$.


          These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.





          Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.






          share|cite|improve this answer











          $endgroup$



          For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:





          • $int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,


          • $f(x)=o(g(x))$ when $xtoinfty$.


          These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.





          Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 11 at 21:19

























          answered May 25 '13 at 17:03









          DidDid

          248k23223460




          248k23223460












          • $begingroup$
            Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:56










          • $begingroup$
            How to get $2sqrt{F(0)}$? Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:57








          • 1




            $begingroup$
            Calculate the derivative of the square root of F
            $endgroup$
            – Bananach
            Jul 31 '16 at 21:59










          • $begingroup$
            @Bananach I see. Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 22:05


















          • $begingroup$
            Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:56










          • $begingroup$
            How to get $2sqrt{F(0)}$? Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 21:57








          • 1




            $begingroup$
            Calculate the derivative of the square root of F
            $endgroup$
            – Bananach
            Jul 31 '16 at 21:59










          • $begingroup$
            @Bananach I see. Thanks
            $endgroup$
            – Topological cat
            Jul 31 '16 at 22:05
















          $begingroup$
          Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
          $endgroup$
          – Topological cat
          Jul 31 '16 at 21:56




          $begingroup$
          Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
          $endgroup$
          – Topological cat
          Jul 31 '16 at 21:56












          $begingroup$
          How to get $2sqrt{F(0)}$? Thanks
          $endgroup$
          – Topological cat
          Jul 31 '16 at 21:57






          $begingroup$
          How to get $2sqrt{F(0)}$? Thanks
          $endgroup$
          – Topological cat
          Jul 31 '16 at 21:57






          1




          1




          $begingroup$
          Calculate the derivative of the square root of F
          $endgroup$
          – Bananach
          Jul 31 '16 at 21:59




          $begingroup$
          Calculate the derivative of the square root of F
          $endgroup$
          – Bananach
          Jul 31 '16 at 21:59












          $begingroup$
          @Bananach I see. Thanks
          $endgroup$
          – Topological cat
          Jul 31 '16 at 22:05




          $begingroup$
          @Bananach I see. Thanks
          $endgroup$
          – Topological cat
          Jul 31 '16 at 22:05


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f402154%2fif-int-0-infty-fx-dx-exists-then-there-exists-some-function-g-such-tha%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith