If $int_0^infty f(x),dx$ exists, then there exists some function $g$ such that $f=o(g)$ and $int_0^infty...
$begingroup$
If $f$ is a positive function such that $int_0^infty f(x),mathrm dx$ converges, show that there is another function $g$ such that $lim_{x to infty} frac {g(x)} {f(x)} = infty$ and $int_0^infty g(x),mathrm dx$ also converges.
integration improper-integrals
$endgroup$
add a comment |
$begingroup$
If $f$ is a positive function such that $int_0^infty f(x),mathrm dx$ converges, show that there is another function $g$ such that $lim_{x to infty} frac {g(x)} {f(x)} = infty$ and $int_0^infty g(x),mathrm dx$ also converges.
integration improper-integrals
$endgroup$
add a comment |
$begingroup$
If $f$ is a positive function such that $int_0^infty f(x),mathrm dx$ converges, show that there is another function $g$ such that $lim_{x to infty} frac {g(x)} {f(x)} = infty$ and $int_0^infty g(x),mathrm dx$ also converges.
integration improper-integrals
$endgroup$
If $f$ is a positive function such that $int_0^infty f(x),mathrm dx$ converges, show that there is another function $g$ such that $lim_{x to infty} frac {g(x)} {f(x)} = infty$ and $int_0^infty g(x),mathrm dx$ also converges.
integration improper-integrals
integration improper-integrals
edited Jan 11 at 21:19
Did
248k23223460
248k23223460
asked May 25 '13 at 15:41
shmuelshmuel
482
482
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:
$int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,
$f(x)=o(g(x))$ when $xtoinfty$.
These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.
Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.
$endgroup$
$begingroup$
Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
$endgroup$
– Topological cat
Jul 31 '16 at 21:56
$begingroup$
How to get $2sqrt{F(0)}$? Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 21:57
1
$begingroup$
Calculate the derivative of the square root of F
$endgroup$
– Bananach
Jul 31 '16 at 21:59
$begingroup$
@Bananach I see. Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 22:05
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f402154%2fif-int-0-infty-fx-dx-exists-then-there-exists-some-function-g-such-tha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:
$int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,
$f(x)=o(g(x))$ when $xtoinfty$.
These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.
Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.
$endgroup$
$begingroup$
Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
$endgroup$
– Topological cat
Jul 31 '16 at 21:56
$begingroup$
How to get $2sqrt{F(0)}$? Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 21:57
1
$begingroup$
Calculate the derivative of the square root of F
$endgroup$
– Bananach
Jul 31 '16 at 21:59
$begingroup$
@Bananach I see. Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 22:05
add a comment |
$begingroup$
For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:
$int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,
$f(x)=o(g(x))$ when $xtoinfty$.
These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.
Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.
$endgroup$
$begingroup$
Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
$endgroup$
– Topological cat
Jul 31 '16 at 21:56
$begingroup$
How to get $2sqrt{F(0)}$? Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 21:57
1
$begingroup$
Calculate the derivative of the square root of F
$endgroup$
– Bananach
Jul 31 '16 at 21:59
$begingroup$
@Bananach I see. Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 22:05
add a comment |
$begingroup$
For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:
$int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,
$f(x)=o(g(x))$ when $xtoinfty$.
These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.
Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.
$endgroup$
For every $xgeqslant0$, let $F(x)=int_x^infty f(t),mathrm dt$ and $g(x)=frac{f(x)}{sqrt{F(x)}}$, then:
$int_0^infty g(t),mathrm dt=2sqrt{F(0)}$ is finite,
$f(x)=o(g(x))$ when $xtoinfty$.
These two assertions hold for the same reason, which is that $F(x)to0$ when $xtoinfty$.
Exercise: Adapt this example to show that for every nonnegative sequence $(a_n)$ such that $sumlimits_na_n$ converges there exists some nonnegative sequence $(b_n)$ such that $a_n=o(b_n)$ and $sumlimits_nb_n$ converges.
edited Jan 11 at 21:19
answered May 25 '13 at 17:03
DidDid
248k23223460
248k23223460
$begingroup$
Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
$endgroup$
– Topological cat
Jul 31 '16 at 21:56
$begingroup$
How to get $2sqrt{F(0)}$? Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 21:57
1
$begingroup$
Calculate the derivative of the square root of F
$endgroup$
– Bananach
Jul 31 '16 at 21:59
$begingroup$
@Bananach I see. Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 22:05
add a comment |
$begingroup$
Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
$endgroup$
– Topological cat
Jul 31 '16 at 21:56
$begingroup$
How to get $2sqrt{F(0)}$? Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 21:57
1
$begingroup$
Calculate the derivative of the square root of F
$endgroup$
– Bananach
Jul 31 '16 at 21:59
$begingroup$
@Bananach I see. Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 22:05
$begingroup$
Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
$endgroup$
– Topological cat
Jul 31 '16 at 21:56
$begingroup$
Trying to follow: $$int_0^infty g(t) , dt = int_0^infty frac{f(t)}{sqrt{int_t^infty f(s) , ds}} , dt$$
$endgroup$
– Topological cat
Jul 31 '16 at 21:56
$begingroup$
How to get $2sqrt{F(0)}$? Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 21:57
$begingroup$
How to get $2sqrt{F(0)}$? Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 21:57
1
1
$begingroup$
Calculate the derivative of the square root of F
$endgroup$
– Bananach
Jul 31 '16 at 21:59
$begingroup$
Calculate the derivative of the square root of F
$endgroup$
– Bananach
Jul 31 '16 at 21:59
$begingroup$
@Bananach I see. Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 22:05
$begingroup$
@Bananach I see. Thanks
$endgroup$
– Topological cat
Jul 31 '16 at 22:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f402154%2fif-int-0-infty-fx-dx-exists-then-there-exists-some-function-g-such-tha%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown