How to calculate $int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} space dx$ [closed]












0












$begingroup$


How to calculate $$int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} spacemathrm{d}x$$










share|cite|improve this question











$endgroup$



closed as off-topic by RRL, amWhy, A. Pongrácz, Gibbs, egreg Jan 6 at 22:53


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – RRL, amWhy, A. Pongrácz, Gibbs, egreg

If this question can be reworded to fit the rules in the help center, please edit the question.





















    0












    $begingroup$


    How to calculate $$int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} spacemathrm{d}x$$










    share|cite|improve this question











    $endgroup$



    closed as off-topic by RRL, amWhy, A. Pongrácz, Gibbs, egreg Jan 6 at 22:53


    This question appears to be off-topic. The users who voted to close gave this specific reason:


    • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – RRL, amWhy, A. Pongrácz, Gibbs, egreg

    If this question can be reworded to fit the rules in the help center, please edit the question.



















      0












      0








      0





      $begingroup$


      How to calculate $$int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} spacemathrm{d}x$$










      share|cite|improve this question











      $endgroup$




      How to calculate $$int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} spacemathrm{d}x$$







      definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 6 at 20:52









      amWhy

      1




      1










      asked Jan 6 at 17:25









      Adil AndersonAdil Anderson

      62




      62




      closed as off-topic by RRL, amWhy, A. Pongrácz, Gibbs, egreg Jan 6 at 22:53


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – RRL, amWhy, A. Pongrácz, Gibbs, egreg

      If this question can be reworded to fit the rules in the help center, please edit the question.







      closed as off-topic by RRL, amWhy, A. Pongrácz, Gibbs, egreg Jan 6 at 22:53


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – RRL, amWhy, A. Pongrácz, Gibbs, egreg

      If this question can be reworded to fit the rules in the help center, please edit the question.






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$


          Short answer: $I=1$.




          Proof:
          Note that
          begin{align*}
          I := int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} space dx\
          overset{text{substitute } v := 3-x}{=} - int_{-1}^1 -frac{sqrt{ln(6+v)}} {sqrt{ln(6+v)} + sqrt{ln(6-v)}} space dx\
          overset{text{substitute } u := -v}{=} int_{-1}^1 -frac{sqrt{ln(6-u)}}{sqrt{ln(6+u)} + sqrt{ln(6-u)}} space dx
          end{align*}



          Thus, $2cdot I = displaystyleint_{-1}^1 frac{sqrt{ln(6-x)}+sqrt{ln(6+x)}}{sqrt{ln(6+x)} + sqrt{ln(6-x)}} space dx = int_{-1}^1 1 = 2$, i.e. $I = 1$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            $$mathbf I =int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}}mathrm{dx}=int_2^4 frac{sqrt{ln(9-(4+2-x))}}{sqrt{ln(9-(4+2-x))} + sqrt{ln(3+(4+2-x))}}mathrm{dx} qquadtext{(Why?)}$$
            So
            $mathbf I =displaystyleint_2^4 frac{sqrt{ln(3+x)}}{sqrt{ln(3+x)} + sqrt{ln(9-x)}}mathrm{dx}$.



            Then $2mathbf I =int_2^4 mathrm{dx}=2$.






            share|cite|improve this answer











            $endgroup$




















              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$


              Short answer: $I=1$.




              Proof:
              Note that
              begin{align*}
              I := int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} space dx\
              overset{text{substitute } v := 3-x}{=} - int_{-1}^1 -frac{sqrt{ln(6+v)}} {sqrt{ln(6+v)} + sqrt{ln(6-v)}} space dx\
              overset{text{substitute } u := -v}{=} int_{-1}^1 -frac{sqrt{ln(6-u)}}{sqrt{ln(6+u)} + sqrt{ln(6-u)}} space dx
              end{align*}



              Thus, $2cdot I = displaystyleint_{-1}^1 frac{sqrt{ln(6-x)}+sqrt{ln(6+x)}}{sqrt{ln(6+x)} + sqrt{ln(6-x)}} space dx = int_{-1}^1 1 = 2$, i.e. $I = 1$






              share|cite|improve this answer











              $endgroup$


















                2












                $begingroup$


                Short answer: $I=1$.




                Proof:
                Note that
                begin{align*}
                I := int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} space dx\
                overset{text{substitute } v := 3-x}{=} - int_{-1}^1 -frac{sqrt{ln(6+v)}} {sqrt{ln(6+v)} + sqrt{ln(6-v)}} space dx\
                overset{text{substitute } u := -v}{=} int_{-1}^1 -frac{sqrt{ln(6-u)}}{sqrt{ln(6+u)} + sqrt{ln(6-u)}} space dx
                end{align*}



                Thus, $2cdot I = displaystyleint_{-1}^1 frac{sqrt{ln(6-x)}+sqrt{ln(6+x)}}{sqrt{ln(6+x)} + sqrt{ln(6-x)}} space dx = int_{-1}^1 1 = 2$, i.e. $I = 1$






                share|cite|improve this answer











                $endgroup$
















                  2












                  2








                  2





                  $begingroup$


                  Short answer: $I=1$.




                  Proof:
                  Note that
                  begin{align*}
                  I := int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} space dx\
                  overset{text{substitute } v := 3-x}{=} - int_{-1}^1 -frac{sqrt{ln(6+v)}} {sqrt{ln(6+v)} + sqrt{ln(6-v)}} space dx\
                  overset{text{substitute } u := -v}{=} int_{-1}^1 -frac{sqrt{ln(6-u)}}{sqrt{ln(6+u)} + sqrt{ln(6-u)}} space dx
                  end{align*}



                  Thus, $2cdot I = displaystyleint_{-1}^1 frac{sqrt{ln(6-x)}+sqrt{ln(6+x)}}{sqrt{ln(6+x)} + sqrt{ln(6-x)}} space dx = int_{-1}^1 1 = 2$, i.e. $I = 1$






                  share|cite|improve this answer











                  $endgroup$




                  Short answer: $I=1$.




                  Proof:
                  Note that
                  begin{align*}
                  I := int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}} space dx\
                  overset{text{substitute } v := 3-x}{=} - int_{-1}^1 -frac{sqrt{ln(6+v)}} {sqrt{ln(6+v)} + sqrt{ln(6-v)}} space dx\
                  overset{text{substitute } u := -v}{=} int_{-1}^1 -frac{sqrt{ln(6-u)}}{sqrt{ln(6+u)} + sqrt{ln(6-u)}} space dx
                  end{align*}



                  Thus, $2cdot I = displaystyleint_{-1}^1 frac{sqrt{ln(6-x)}+sqrt{ln(6+x)}}{sqrt{ln(6+x)} + sqrt{ln(6-x)}} space dx = int_{-1}^1 1 = 2$, i.e. $I = 1$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 6 at 17:55









                  Bernard

                  119k740113




                  119k740113










                  answered Jan 6 at 17:28









                  Maximilian JanischMaximilian Janisch

                  44110




                  44110























                      1












                      $begingroup$

                      $$mathbf I =int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}}mathrm{dx}=int_2^4 frac{sqrt{ln(9-(4+2-x))}}{sqrt{ln(9-(4+2-x))} + sqrt{ln(3+(4+2-x))}}mathrm{dx} qquadtext{(Why?)}$$
                      So
                      $mathbf I =displaystyleint_2^4 frac{sqrt{ln(3+x)}}{sqrt{ln(3+x)} + sqrt{ln(9-x)}}mathrm{dx}$.



                      Then $2mathbf I =int_2^4 mathrm{dx}=2$.






                      share|cite|improve this answer











                      $endgroup$


















                        1












                        $begingroup$

                        $$mathbf I =int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}}mathrm{dx}=int_2^4 frac{sqrt{ln(9-(4+2-x))}}{sqrt{ln(9-(4+2-x))} + sqrt{ln(3+(4+2-x))}}mathrm{dx} qquadtext{(Why?)}$$
                        So
                        $mathbf I =displaystyleint_2^4 frac{sqrt{ln(3+x)}}{sqrt{ln(3+x)} + sqrt{ln(9-x)}}mathrm{dx}$.



                        Then $2mathbf I =int_2^4 mathrm{dx}=2$.






                        share|cite|improve this answer











                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          $$mathbf I =int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}}mathrm{dx}=int_2^4 frac{sqrt{ln(9-(4+2-x))}}{sqrt{ln(9-(4+2-x))} + sqrt{ln(3+(4+2-x))}}mathrm{dx} qquadtext{(Why?)}$$
                          So
                          $mathbf I =displaystyleint_2^4 frac{sqrt{ln(3+x)}}{sqrt{ln(3+x)} + sqrt{ln(9-x)}}mathrm{dx}$.



                          Then $2mathbf I =int_2^4 mathrm{dx}=2$.






                          share|cite|improve this answer











                          $endgroup$



                          $$mathbf I =int_2^4 frac{sqrt{ln(9-x)}}{sqrt{ln(9-x)} + sqrt{ln(3+x)}}mathrm{dx}=int_2^4 frac{sqrt{ln(9-(4+2-x))}}{sqrt{ln(9-(4+2-x))} + sqrt{ln(3+(4+2-x))}}mathrm{dx} qquadtext{(Why?)}$$
                          So
                          $mathbf I =displaystyleint_2^4 frac{sqrt{ln(3+x)}}{sqrt{ln(3+x)} + sqrt{ln(9-x)}}mathrm{dx}$.



                          Then $2mathbf I =int_2^4 mathrm{dx}=2$.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 6 at 17:56









                          Bernard

                          119k740113




                          119k740113










                          answered Jan 6 at 17:33









                          Thomas ShelbyThomas Shelby

                          2,550421




                          2,550421















                              Popular posts from this blog

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              SQL update select statement

                              WPF add header to Image with URL pettitions [duplicate]