$int_{-infty}^{infty} (x+1)(x-1)e^{-(x+1)^2(x-1)^2}$












4












$begingroup$


I am tring to solve the following integral:
$$I=int_{-infty}^infty(x+1)(x-1)e^{-(x+1)^2(x-1)^2}dx$$
So far I cannot think of a method for doing this other than numerically, And I have no proof that it has an elementary solution. Any thoughts?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You can express the result with the Bessel function
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 14:11






  • 1




    $begingroup$
    see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 14:13






  • 1




    $begingroup$
    Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
    $endgroup$
    – aleden
    Jan 12 at 16:14










  • $begingroup$
    @aleden How'd you get the lower bound (0)?
    $endgroup$
    – Cardioid_Ass_22
    Jan 12 at 18:34






  • 1




    $begingroup$
    @Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
    $endgroup$
    – aleden
    Jan 12 at 20:19


















4












$begingroup$


I am tring to solve the following integral:
$$I=int_{-infty}^infty(x+1)(x-1)e^{-(x+1)^2(x-1)^2}dx$$
So far I cannot think of a method for doing this other than numerically, And I have no proof that it has an elementary solution. Any thoughts?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You can express the result with the Bessel function
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 14:11






  • 1




    $begingroup$
    see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 14:13






  • 1




    $begingroup$
    Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
    $endgroup$
    – aleden
    Jan 12 at 16:14










  • $begingroup$
    @aleden How'd you get the lower bound (0)?
    $endgroup$
    – Cardioid_Ass_22
    Jan 12 at 18:34






  • 1




    $begingroup$
    @Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
    $endgroup$
    – aleden
    Jan 12 at 20:19
















4












4








4





$begingroup$


I am tring to solve the following integral:
$$I=int_{-infty}^infty(x+1)(x-1)e^{-(x+1)^2(x-1)^2}dx$$
So far I cannot think of a method for doing this other than numerically, And I have no proof that it has an elementary solution. Any thoughts?










share|cite|improve this question









$endgroup$




I am tring to solve the following integral:
$$I=int_{-infty}^infty(x+1)(x-1)e^{-(x+1)^2(x-1)^2}dx$$
So far I cannot think of a method for doing this other than numerically, And I have no proof that it has an elementary solution. Any thoughts?







integration numerical-methods






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 12 at 14:07









Henry LeeHenry Lee

1,966219




1,966219








  • 1




    $begingroup$
    You can express the result with the Bessel function
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 14:11






  • 1




    $begingroup$
    see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 14:13






  • 1




    $begingroup$
    Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
    $endgroup$
    – aleden
    Jan 12 at 16:14










  • $begingroup$
    @aleden How'd you get the lower bound (0)?
    $endgroup$
    – Cardioid_Ass_22
    Jan 12 at 18:34






  • 1




    $begingroup$
    @Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
    $endgroup$
    – aleden
    Jan 12 at 20:19
















  • 1




    $begingroup$
    You can express the result with the Bessel function
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 14:11






  • 1




    $begingroup$
    see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 12 at 14:13






  • 1




    $begingroup$
    Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
    $endgroup$
    – aleden
    Jan 12 at 16:14










  • $begingroup$
    @aleden How'd you get the lower bound (0)?
    $endgroup$
    – Cardioid_Ass_22
    Jan 12 at 18:34






  • 1




    $begingroup$
    @Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
    $endgroup$
    – aleden
    Jan 12 at 20:19










1




1




$begingroup$
You can express the result with the Bessel function
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:11




$begingroup$
You can express the result with the Bessel function
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:11




1




1




$begingroup$
see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:13




$begingroup$
see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:13




1




1




$begingroup$
Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
$endgroup$
– aleden
Jan 12 at 16:14




$begingroup$
Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
$endgroup$
– aleden
Jan 12 at 16:14












$begingroup$
@aleden How'd you get the lower bound (0)?
$endgroup$
– Cardioid_Ass_22
Jan 12 at 18:34




$begingroup$
@aleden How'd you get the lower bound (0)?
$endgroup$
– Cardioid_Ass_22
Jan 12 at 18:34




1




1




$begingroup$
@Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
$endgroup$
– aleden
Jan 12 at 20:19






$begingroup$
@Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
$endgroup$
– aleden
Jan 12 at 20:19












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070934%2fint-infty-infty-x1x-1e-x12x-12%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070934%2fint-infty-infty-x1x-1e-x12x-12%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

Npm cannot find a required file even through it is in the searched directory