$int_{-infty}^{infty} (x+1)(x-1)e^{-(x+1)^2(x-1)^2}$
$begingroup$
I am tring to solve the following integral:
$$I=int_{-infty}^infty(x+1)(x-1)e^{-(x+1)^2(x-1)^2}dx$$
So far I cannot think of a method for doing this other than numerically, And I have no proof that it has an elementary solution. Any thoughts?
integration numerical-methods
$endgroup$
|
show 3 more comments
$begingroup$
I am tring to solve the following integral:
$$I=int_{-infty}^infty(x+1)(x-1)e^{-(x+1)^2(x-1)^2}dx$$
So far I cannot think of a method for doing this other than numerically, And I have no proof that it has an elementary solution. Any thoughts?
integration numerical-methods
$endgroup$
1
$begingroup$
You can express the result with the Bessel function
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:11
1
$begingroup$
see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:13
1
$begingroup$
Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
$endgroup$
– aleden
Jan 12 at 16:14
$begingroup$
@aleden How'd you get the lower bound (0)?
$endgroup$
– Cardioid_Ass_22
Jan 12 at 18:34
1
$begingroup$
@Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
$endgroup$
– aleden
Jan 12 at 20:19
|
show 3 more comments
$begingroup$
I am tring to solve the following integral:
$$I=int_{-infty}^infty(x+1)(x-1)e^{-(x+1)^2(x-1)^2}dx$$
So far I cannot think of a method for doing this other than numerically, And I have no proof that it has an elementary solution. Any thoughts?
integration numerical-methods
$endgroup$
I am tring to solve the following integral:
$$I=int_{-infty}^infty(x+1)(x-1)e^{-(x+1)^2(x-1)^2}dx$$
So far I cannot think of a method for doing this other than numerically, And I have no proof that it has an elementary solution. Any thoughts?
integration numerical-methods
integration numerical-methods
asked Jan 12 at 14:07
Henry LeeHenry Lee
1,966219
1,966219
1
$begingroup$
You can express the result with the Bessel function
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:11
1
$begingroup$
see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:13
1
$begingroup$
Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
$endgroup$
– aleden
Jan 12 at 16:14
$begingroup$
@aleden How'd you get the lower bound (0)?
$endgroup$
– Cardioid_Ass_22
Jan 12 at 18:34
1
$begingroup$
@Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
$endgroup$
– aleden
Jan 12 at 20:19
|
show 3 more comments
1
$begingroup$
You can express the result with the Bessel function
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:11
1
$begingroup$
see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:13
1
$begingroup$
Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
$endgroup$
– aleden
Jan 12 at 16:14
$begingroup$
@aleden How'd you get the lower bound (0)?
$endgroup$
– Cardioid_Ass_22
Jan 12 at 18:34
1
$begingroup$
@Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
$endgroup$
– aleden
Jan 12 at 20:19
1
1
$begingroup$
You can express the result with the Bessel function
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:11
$begingroup$
You can express the result with the Bessel function
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:11
1
1
$begingroup$
see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:13
$begingroup$
see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:13
1
1
$begingroup$
Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
$endgroup$
– aleden
Jan 12 at 16:14
$begingroup$
Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
$endgroup$
– aleden
Jan 12 at 16:14
$begingroup$
@aleden How'd you get the lower bound (0)?
$endgroup$
– Cardioid_Ass_22
Jan 12 at 18:34
$begingroup$
@aleden How'd you get the lower bound (0)?
$endgroup$
– Cardioid_Ass_22
Jan 12 at 18:34
1
1
$begingroup$
@Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
$endgroup$
– aleden
Jan 12 at 20:19
$begingroup$
@Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
$endgroup$
– aleden
Jan 12 at 20:19
|
show 3 more comments
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070934%2fint-infty-infty-x1x-1e-x12x-12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070934%2fint-infty-infty-x1x-1e-x12x-12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You can express the result with the Bessel function
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:11
1
$begingroup$
see here $$frac{pi left(I_{-frac{5}{4}}left(frac{1}{2}right)+ I_{frac{5}{4}}left(frac{1}{2}right)right)} {4 sqrt{e}}$$
$endgroup$
– Dr. Sonnhard Graubner
Jan 12 at 14:13
1
$begingroup$
Through substitution the integral should reduce to $I=int_0^infty frac{ue^{-u^2}}{sqrt{u+1}}du$, but I'm not sure if that makes it any easier.
$endgroup$
– aleden
Jan 12 at 16:14
$begingroup$
@aleden How'd you get the lower bound (0)?
$endgroup$
– Cardioid_Ass_22
Jan 12 at 18:34
1
$begingroup$
@Cardioid_Ass_22 yes you are correct, my mistake. It should be $I=int_{-1}^infty frac{ue^{-u^2}}{sqrt{u+1}}du$
$endgroup$
– aleden
Jan 12 at 20:19