Integrals depending on a parameter: $int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $












3












$begingroup$


I'm trying to calculate this integral:
$$ int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $$
For $a > 0$.



This is what I did:
$$ I(a) = int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx \
I'(a) = int_{0}^{pi/2} frac{2asin^2{x}}{(a^2sin^2{x} + cos^2{x})} dx \
I'(a) = int_{0}^{pi/2} frac{2a}{(a^2 + frac{cos^2{x}}{sin^2{x}})} dx \
I'(a) = 2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx \
I'(a) = frac{2}{a} int_{0}^{pi/2} frac{1}{1 + frac{cot^2{x}}{a^2}}dx $$

Here I tried to substitude $frac{cot^2{x}}{a^2} = t$. This should lead me to $arctan(something)$ (I write $arctan{x} = tan^{-1}{x}$.)

But I got stuck.



After I get the derivative I should integrate it back to get $I(a)$. Also there are steps that need some prepositions to be checked. Could one help me with this integral and also to clarify the steps that need special attention; such as the second step, where I can get the derivative $I'(a)$ only if the function under the integral can be differentiated? It must be possible to find its derivative.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    I'm trying to calculate this integral:
    $$ int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $$
    For $a > 0$.



    This is what I did:
    $$ I(a) = int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx \
    I'(a) = int_{0}^{pi/2} frac{2asin^2{x}}{(a^2sin^2{x} + cos^2{x})} dx \
    I'(a) = int_{0}^{pi/2} frac{2a}{(a^2 + frac{cos^2{x}}{sin^2{x}})} dx \
    I'(a) = 2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx \
    I'(a) = frac{2}{a} int_{0}^{pi/2} frac{1}{1 + frac{cot^2{x}}{a^2}}dx $$

    Here I tried to substitude $frac{cot^2{x}}{a^2} = t$. This should lead me to $arctan(something)$ (I write $arctan{x} = tan^{-1}{x}$.)

    But I got stuck.



    After I get the derivative I should integrate it back to get $I(a)$. Also there are steps that need some prepositions to be checked. Could one help me with this integral and also to clarify the steps that need special attention; such as the second step, where I can get the derivative $I'(a)$ only if the function under the integral can be differentiated? It must be possible to find its derivative.










    share|cite|improve this question











    $endgroup$















      3












      3








      3


      2



      $begingroup$


      I'm trying to calculate this integral:
      $$ int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $$
      For $a > 0$.



      This is what I did:
      $$ I(a) = int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx \
      I'(a) = int_{0}^{pi/2} frac{2asin^2{x}}{(a^2sin^2{x} + cos^2{x})} dx \
      I'(a) = int_{0}^{pi/2} frac{2a}{(a^2 + frac{cos^2{x}}{sin^2{x}})} dx \
      I'(a) = 2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx \
      I'(a) = frac{2}{a} int_{0}^{pi/2} frac{1}{1 + frac{cot^2{x}}{a^2}}dx $$

      Here I tried to substitude $frac{cot^2{x}}{a^2} = t$. This should lead me to $arctan(something)$ (I write $arctan{x} = tan^{-1}{x}$.)

      But I got stuck.



      After I get the derivative I should integrate it back to get $I(a)$. Also there are steps that need some prepositions to be checked. Could one help me with this integral and also to clarify the steps that need special attention; such as the second step, where I can get the derivative $I'(a)$ only if the function under the integral can be differentiated? It must be possible to find its derivative.










      share|cite|improve this question











      $endgroup$




      I'm trying to calculate this integral:
      $$ int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $$
      For $a > 0$.



      This is what I did:
      $$ I(a) = int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx \
      I'(a) = int_{0}^{pi/2} frac{2asin^2{x}}{(a^2sin^2{x} + cos^2{x})} dx \
      I'(a) = int_{0}^{pi/2} frac{2a}{(a^2 + frac{cos^2{x}}{sin^2{x}})} dx \
      I'(a) = 2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx \
      I'(a) = frac{2}{a} int_{0}^{pi/2} frac{1}{1 + frac{cot^2{x}}{a^2}}dx $$

      Here I tried to substitude $frac{cot^2{x}}{a^2} = t$. This should lead me to $arctan(something)$ (I write $arctan{x} = tan^{-1}{x}$.)

      But I got stuck.



      After I get the derivative I should integrate it back to get $I(a)$. Also there are steps that need some prepositions to be checked. Could one help me with this integral and also to clarify the steps that need special attention; such as the second step, where I can get the derivative $I'(a)$ only if the function under the integral can be differentiated? It must be possible to find its derivative.







      real-analysis calculus analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 17 at 16:01









      KM101

      6,0251525




      6,0251525










      asked Jan 17 at 15:37









      CoupeauCoupeau

      1296




      1296






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Note that, under $cot xto x$,
          begin{eqnarray*}
          I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
          &=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
          &=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
          &=&frac{pi}{1+a}.
          end{eqnarray*}

          which can be easily handled. So
          $$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
          and hence
          $$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
          since $I(1)=0$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
            $endgroup$
            – Coupeau
            Jan 18 at 20:00












          • $begingroup$
            Yes, it will be better if using $I(1)=0$.
            $endgroup$
            – xpaul
            Jan 18 at 20:23



















          2












          $begingroup$

          you can also use the series of $ln x$ to find it



          $$begin{aligned}
          int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
          & = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
          & = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
          & = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
          end{aligned}$$



          where you need wallis' integral here, then using this identity



          $$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$



          let $x=1/sqrt{a^2-1}$ and you will find the answer



          $$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077128%2fintegrals-depending-on-a-parameter-int-0-pi-2-lna2-sin2x-cos2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Note that, under $cot xto x$,
            begin{eqnarray*}
            I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
            &=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
            &=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
            &=&frac{pi}{1+a}.
            end{eqnarray*}

            which can be easily handled. So
            $$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
            and hence
            $$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
            since $I(1)=0$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
              $endgroup$
              – Coupeau
              Jan 18 at 20:00












            • $begingroup$
              Yes, it will be better if using $I(1)=0$.
              $endgroup$
              – xpaul
              Jan 18 at 20:23
















            3












            $begingroup$

            Note that, under $cot xto x$,
            begin{eqnarray*}
            I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
            &=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
            &=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
            &=&frac{pi}{1+a}.
            end{eqnarray*}

            which can be easily handled. So
            $$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
            and hence
            $$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
            since $I(1)=0$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
              $endgroup$
              – Coupeau
              Jan 18 at 20:00












            • $begingroup$
              Yes, it will be better if using $I(1)=0$.
              $endgroup$
              – xpaul
              Jan 18 at 20:23














            3












            3








            3





            $begingroup$

            Note that, under $cot xto x$,
            begin{eqnarray*}
            I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
            &=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
            &=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
            &=&frac{pi}{1+a}.
            end{eqnarray*}

            which can be easily handled. So
            $$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
            and hence
            $$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
            since $I(1)=0$.






            share|cite|improve this answer











            $endgroup$



            Note that, under $cot xto x$,
            begin{eqnarray*}
            I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
            &=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
            &=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
            &=&frac{pi}{1+a}.
            end{eqnarray*}

            which can be easily handled. So
            $$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
            and hence
            $$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
            since $I(1)=0$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 18 at 20:25

























            answered Jan 17 at 16:09









            xpaulxpaul

            22.9k24455




            22.9k24455












            • $begingroup$
              Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
              $endgroup$
              – Coupeau
              Jan 18 at 20:00












            • $begingroup$
              Yes, it will be better if using $I(1)=0$.
              $endgroup$
              – xpaul
              Jan 18 at 20:23


















            • $begingroup$
              Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
              $endgroup$
              – Coupeau
              Jan 18 at 20:00












            • $begingroup$
              Yes, it will be better if using $I(1)=0$.
              $endgroup$
              – xpaul
              Jan 18 at 20:23
















            $begingroup$
            Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
            $endgroup$
            – Coupeau
            Jan 18 at 20:00






            $begingroup$
            Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
            $endgroup$
            – Coupeau
            Jan 18 at 20:00














            $begingroup$
            Yes, it will be better if using $I(1)=0$.
            $endgroup$
            – xpaul
            Jan 18 at 20:23




            $begingroup$
            Yes, it will be better if using $I(1)=0$.
            $endgroup$
            – xpaul
            Jan 18 at 20:23











            2












            $begingroup$

            you can also use the series of $ln x$ to find it



            $$begin{aligned}
            int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
            & = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
            & = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
            & = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
            end{aligned}$$



            where you need wallis' integral here, then using this identity



            $$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$



            let $x=1/sqrt{a^2-1}$ and you will find the answer



            $$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              you can also use the series of $ln x$ to find it



              $$begin{aligned}
              int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
              & = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
              & = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
              & = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
              end{aligned}$$



              where you need wallis' integral here, then using this identity



              $$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$



              let $x=1/sqrt{a^2-1}$ and you will find the answer



              $$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                you can also use the series of $ln x$ to find it



                $$begin{aligned}
                int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
                & = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
                & = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
                & = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
                end{aligned}$$



                where you need wallis' integral here, then using this identity



                $$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$



                let $x=1/sqrt{a^2-1}$ and you will find the answer



                $$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$






                share|cite|improve this answer











                $endgroup$



                you can also use the series of $ln x$ to find it



                $$begin{aligned}
                int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
                & = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
                & = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
                & = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
                end{aligned}$$



                where you need wallis' integral here, then using this identity



                $$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$



                let $x=1/sqrt{a^2-1}$ and you will find the answer



                $$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 17 at 16:37

























                answered Jan 17 at 16:31









                NanayajitzukiNanayajitzuki

                3185




                3185






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077128%2fintegrals-depending-on-a-parameter-int-0-pi-2-lna2-sin2x-cos2%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    Npm cannot find a required file even through it is in the searched directory