Integrals depending on a parameter: $int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $
$begingroup$
I'm trying to calculate this integral:
$$ int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $$
For $a > 0$.
This is what I did:
$$ I(a) = int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx \
I'(a) = int_{0}^{pi/2} frac{2asin^2{x}}{(a^2sin^2{x} + cos^2{x})} dx \
I'(a) = int_{0}^{pi/2} frac{2a}{(a^2 + frac{cos^2{x}}{sin^2{x}})} dx \
I'(a) = 2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx \
I'(a) = frac{2}{a} int_{0}^{pi/2} frac{1}{1 + frac{cot^2{x}}{a^2}}dx $$
Here I tried to substitude $frac{cot^2{x}}{a^2} = t$. This should lead me to $arctan(something)$ (I write $arctan{x} = tan^{-1}{x}$.)
But I got stuck.
After I get the derivative I should integrate it back to get $I(a)$. Also there are steps that need some prepositions to be checked. Could one help me with this integral and also to clarify the steps that need special attention; such as the second step, where I can get the derivative $I'(a)$ only if the function under the integral can be differentiated? It must be possible to find its derivative.
real-analysis calculus analysis
$endgroup$
add a comment |
$begingroup$
I'm trying to calculate this integral:
$$ int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $$
For $a > 0$.
This is what I did:
$$ I(a) = int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx \
I'(a) = int_{0}^{pi/2} frac{2asin^2{x}}{(a^2sin^2{x} + cos^2{x})} dx \
I'(a) = int_{0}^{pi/2} frac{2a}{(a^2 + frac{cos^2{x}}{sin^2{x}})} dx \
I'(a) = 2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx \
I'(a) = frac{2}{a} int_{0}^{pi/2} frac{1}{1 + frac{cot^2{x}}{a^2}}dx $$
Here I tried to substitude $frac{cot^2{x}}{a^2} = t$. This should lead me to $arctan(something)$ (I write $arctan{x} = tan^{-1}{x}$.)
But I got stuck.
After I get the derivative I should integrate it back to get $I(a)$. Also there are steps that need some prepositions to be checked. Could one help me with this integral and also to clarify the steps that need special attention; such as the second step, where I can get the derivative $I'(a)$ only if the function under the integral can be differentiated? It must be possible to find its derivative.
real-analysis calculus analysis
$endgroup$
add a comment |
$begingroup$
I'm trying to calculate this integral:
$$ int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $$
For $a > 0$.
This is what I did:
$$ I(a) = int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx \
I'(a) = int_{0}^{pi/2} frac{2asin^2{x}}{(a^2sin^2{x} + cos^2{x})} dx \
I'(a) = int_{0}^{pi/2} frac{2a}{(a^2 + frac{cos^2{x}}{sin^2{x}})} dx \
I'(a) = 2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx \
I'(a) = frac{2}{a} int_{0}^{pi/2} frac{1}{1 + frac{cot^2{x}}{a^2}}dx $$
Here I tried to substitude $frac{cot^2{x}}{a^2} = t$. This should lead me to $arctan(something)$ (I write $arctan{x} = tan^{-1}{x}$.)
But I got stuck.
After I get the derivative I should integrate it back to get $I(a)$. Also there are steps that need some prepositions to be checked. Could one help me with this integral and also to clarify the steps that need special attention; such as the second step, where I can get the derivative $I'(a)$ only if the function under the integral can be differentiated? It must be possible to find its derivative.
real-analysis calculus analysis
$endgroup$
I'm trying to calculate this integral:
$$ int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx $$
For $a > 0$.
This is what I did:
$$ I(a) = int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x})dx \
I'(a) = int_{0}^{pi/2} frac{2asin^2{x}}{(a^2sin^2{x} + cos^2{x})} dx \
I'(a) = int_{0}^{pi/2} frac{2a}{(a^2 + frac{cos^2{x}}{sin^2{x}})} dx \
I'(a) = 2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx \
I'(a) = frac{2}{a} int_{0}^{pi/2} frac{1}{1 + frac{cot^2{x}}{a^2}}dx $$
Here I tried to substitude $frac{cot^2{x}}{a^2} = t$. This should lead me to $arctan(something)$ (I write $arctan{x} = tan^{-1}{x}$.)
But I got stuck.
After I get the derivative I should integrate it back to get $I(a)$. Also there are steps that need some prepositions to be checked. Could one help me with this integral and also to clarify the steps that need special attention; such as the second step, where I can get the derivative $I'(a)$ only if the function under the integral can be differentiated? It must be possible to find its derivative.
real-analysis calculus analysis
real-analysis calculus analysis
edited Jan 17 at 16:01
KM101
6,0251525
6,0251525
asked Jan 17 at 15:37


CoupeauCoupeau
1296
1296
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Note that, under $cot xto x$,
begin{eqnarray*}
I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
&=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
&=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
&=&frac{pi}{1+a}.
end{eqnarray*}
which can be easily handled. So
$$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
and hence
$$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
since $I(1)=0$.
$endgroup$
$begingroup$
Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
$endgroup$
– Coupeau
Jan 18 at 20:00
$begingroup$
Yes, it will be better if using $I(1)=0$.
$endgroup$
– xpaul
Jan 18 at 20:23
add a comment |
$begingroup$
you can also use the series of $ln x$ to find it
$$begin{aligned}
int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
& = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
& = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
& = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
end{aligned}$$
where you need wallis' integral here, then using this identity
$$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$
let $x=1/sqrt{a^2-1}$ and you will find the answer
$$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077128%2fintegrals-depending-on-a-parameter-int-0-pi-2-lna2-sin2x-cos2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that, under $cot xto x$,
begin{eqnarray*}
I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
&=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
&=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
&=&frac{pi}{1+a}.
end{eqnarray*}
which can be easily handled. So
$$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
and hence
$$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
since $I(1)=0$.
$endgroup$
$begingroup$
Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
$endgroup$
– Coupeau
Jan 18 at 20:00
$begingroup$
Yes, it will be better if using $I(1)=0$.
$endgroup$
– xpaul
Jan 18 at 20:23
add a comment |
$begingroup$
Note that, under $cot xto x$,
begin{eqnarray*}
I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
&=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
&=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
&=&frac{pi}{1+a}.
end{eqnarray*}
which can be easily handled. So
$$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
and hence
$$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
since $I(1)=0$.
$endgroup$
$begingroup$
Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
$endgroup$
– Coupeau
Jan 18 at 20:00
$begingroup$
Yes, it will be better if using $I(1)=0$.
$endgroup$
– xpaul
Jan 18 at 20:23
add a comment |
$begingroup$
Note that, under $cot xto x$,
begin{eqnarray*}
I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
&=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
&=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
&=&frac{pi}{1+a}.
end{eqnarray*}
which can be easily handled. So
$$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
and hence
$$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
since $I(1)=0$.
$endgroup$
Note that, under $cot xto x$,
begin{eqnarray*}
I'(a)& = &2a int_{0}^{pi/2} frac{1}{a^2 + cot^2{x}}dx\
&=&2aint_0^inftyfrac{1}{(a^2+x^2)(1+x^2)}dx\
&=&frac{2a}{1-a^2}int_0^inftybigg(frac{1}{a^2+x^2}-frac{1}{1+x^2}bigg)dx
&=&frac{pi}{1+a}.
end{eqnarray*}
which can be easily handled. So
$$ I(1)-I(a)=int_a^1frac{pi}{1+t}dt=pi(ln2-ln(1+a))$$
and hence
$$ I(a)=-piln2+piln(1+a)=pilnfrac{1+a}{2}. $$
since $I(1)=0$.
edited Jan 18 at 20:25
answered Jan 17 at 16:09


xpaulxpaul
22.9k24455
22.9k24455
$begingroup$
Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
$endgroup$
– Coupeau
Jan 18 at 20:00
$begingroup$
Yes, it will be better if using $I(1)=0$.
$endgroup$
– xpaul
Jan 18 at 20:23
add a comment |
$begingroup$
Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
$endgroup$
– Coupeau
Jan 18 at 20:00
$begingroup$
Yes, it will be better if using $I(1)=0$.
$endgroup$
– xpaul
Jan 18 at 20:23
$begingroup$
Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
$endgroup$
– Coupeau
Jan 18 at 20:00
$begingroup$
Thank you.Only, I do not understand how you got $I(0) = 2 int_{0}^{frac{pi}{2}} ln{cos{x}} dx$ to be $-pi ln2$. I did get the same resoult after calculating $I(a) = pi ln{(1+a)} + C$ and $I(1) = 0$. Could you explain a little further how you calculated this integal?
$endgroup$
– Coupeau
Jan 18 at 20:00
$begingroup$
Yes, it will be better if using $I(1)=0$.
$endgroup$
– xpaul
Jan 18 at 20:23
$begingroup$
Yes, it will be better if using $I(1)=0$.
$endgroup$
– xpaul
Jan 18 at 20:23
add a comment |
$begingroup$
you can also use the series of $ln x$ to find it
$$begin{aligned}
int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
& = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
& = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
& = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
end{aligned}$$
where you need wallis' integral here, then using this identity
$$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$
let $x=1/sqrt{a^2-1}$ and you will find the answer
$$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$
$endgroup$
add a comment |
$begingroup$
you can also use the series of $ln x$ to find it
$$begin{aligned}
int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
& = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
& = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
& = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
end{aligned}$$
where you need wallis' integral here, then using this identity
$$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$
let $x=1/sqrt{a^2-1}$ and you will find the answer
$$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$
$endgroup$
add a comment |
$begingroup$
you can also use the series of $ln x$ to find it
$$begin{aligned}
int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
& = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
& = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
& = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
end{aligned}$$
where you need wallis' integral here, then using this identity
$$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$
let $x=1/sqrt{a^2-1}$ and you will find the answer
$$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$
$endgroup$
you can also use the series of $ln x$ to find it
$$begin{aligned}
int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x
& = int_{0}^{pi/2} ln(1+(a^2-1)sin^2{x}) mathrm{d}x\
& = sum_{n=1}^{infty} frac{(-1)^{n-1}}{n} int_{0}^{pi/2}(a^2-1)^nsin^{2n}{x} mathrm{d}x\
& = pi sum_{n=1}^{infty} frac{(-1)^{n-1}}{2n} frac{(2n-1)!!}{(2n)!!} (a^2-1)^n
end{aligned}$$
where you need wallis' integral here, then using this identity
$$operatorname{arsinh} x = ln(2x) + sumlimits_{n = 1}^infty {left( { - 1} right)^{n - 1} frac{{left( {2n - 1} right)!!}}{{2nleft( {2n} right)!!}}} frac{1}{{x^{2n} }}$$
let $x=1/sqrt{a^2-1}$ and you will find the answer
$$int_{0}^{pi/2} ln(a^2sin^2{x} + cos^2{x}) mathrm{d}x = pileft( operatorname{arsinh} frac1{sqrt{a^2-1}} - lnfrac2{sqrt{a^2-1}} right) = pilnfrac{a+1}{2}$$
edited Jan 17 at 16:37
answered Jan 17 at 16:31
NanayajitzukiNanayajitzuki
3185
3185
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077128%2fintegrals-depending-on-a-parameter-int-0-pi-2-lna2-sin2x-cos2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown