Let $F ( x ) = frac { x } { | x | ^ { 3 } }$, if $0 in Omega$ show $iint _ { partial Omega } ( F cdot nu ) d...












2












$begingroup$


Problem: Let $Omega subset mathbb { R } ^ { 3 }$ a regular domain and $nu$ the unit external vector of $partial Omega$. Let $F ( x ) = frac { x } { | x | ^ { 3 } }$.



Prove that if $0 in Omega$, then $iint _ { partial Omega } ( F cdot nu ) d s = 4 pi$.



I tried to apply the divergence theorem, $$iiint _ { Omega } operatorname { div } F mathrm { d } x _ { 1 } mathrm { d } x _ { 2 } mathrm { d } x _ { 3 } = iint _ { partial Omega } ( F cdot nu ) mathrm { d } s$$



But without getting interesting results since I have so few informations about $Omega$.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Problem: Let $Omega subset mathbb { R } ^ { 3 }$ a regular domain and $nu$ the unit external vector of $partial Omega$. Let $F ( x ) = frac { x } { | x | ^ { 3 } }$.



    Prove that if $0 in Omega$, then $iint _ { partial Omega } ( F cdot nu ) d s = 4 pi$.



    I tried to apply the divergence theorem, $$iiint _ { Omega } operatorname { div } F mathrm { d } x _ { 1 } mathrm { d } x _ { 2 } mathrm { d } x _ { 3 } = iint _ { partial Omega } ( F cdot nu ) mathrm { d } s$$



    But without getting interesting results since I have so few informations about $Omega$.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Problem: Let $Omega subset mathbb { R } ^ { 3 }$ a regular domain and $nu$ the unit external vector of $partial Omega$. Let $F ( x ) = frac { x } { | x | ^ { 3 } }$.



      Prove that if $0 in Omega$, then $iint _ { partial Omega } ( F cdot nu ) d s = 4 pi$.



      I tried to apply the divergence theorem, $$iiint _ { Omega } operatorname { div } F mathrm { d } x _ { 1 } mathrm { d } x _ { 2 } mathrm { d } x _ { 3 } = iint _ { partial Omega } ( F cdot nu ) mathrm { d } s$$



      But without getting interesting results since I have so few informations about $Omega$.










      share|cite|improve this question









      $endgroup$




      Problem: Let $Omega subset mathbb { R } ^ { 3 }$ a regular domain and $nu$ the unit external vector of $partial Omega$. Let $F ( x ) = frac { x } { | x | ^ { 3 } }$.



      Prove that if $0 in Omega$, then $iint _ { partial Omega } ( F cdot nu ) d s = 4 pi$.



      I tried to apply the divergence theorem, $$iiint _ { Omega } operatorname { div } F mathrm { d } x _ { 1 } mathrm { d } x _ { 2 } mathrm { d } x _ { 3 } = iint _ { partial Omega } ( F cdot nu ) mathrm { d } s$$



      But without getting interesting results since I have so few informations about $Omega$.







      calculus multivariable-calculus vector-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 12 at 14:10









      NotAbelianGroupNotAbelianGroup

      15511




      15511






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
          $$
          int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Note that $text{div}F=0$ on $Omega_epsilon$ and hence
          $$
          int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
          $$
          int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your great and clear answer.
            $endgroup$
            – NotAbelianGroup
            Jan 12 at 14:58






          • 1




            $begingroup$
            I hope this will help :)
            $endgroup$
            – Song
            Jan 12 at 15:16










          • $begingroup$
            I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
            $endgroup$
            – NotAbelianGroup
            Jan 14 at 17:05











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070937%2flet-f-x-frac-x-x-3-if-0-in-omega-show-iint%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
          $$
          int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Note that $text{div}F=0$ on $Omega_epsilon$ and hence
          $$
          int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
          $$
          int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your great and clear answer.
            $endgroup$
            – NotAbelianGroup
            Jan 12 at 14:58






          • 1




            $begingroup$
            I hope this will help :)
            $endgroup$
            – Song
            Jan 12 at 15:16










          • $begingroup$
            I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
            $endgroup$
            – NotAbelianGroup
            Jan 14 at 17:05
















          3












          $begingroup$

          You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
          $$
          int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Note that $text{div}F=0$ on $Omega_epsilon$ and hence
          $$
          int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
          $$
          int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you for your great and clear answer.
            $endgroup$
            – NotAbelianGroup
            Jan 12 at 14:58






          • 1




            $begingroup$
            I hope this will help :)
            $endgroup$
            – Song
            Jan 12 at 15:16










          • $begingroup$
            I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
            $endgroup$
            – NotAbelianGroup
            Jan 14 at 17:05














          3












          3








          3





          $begingroup$

          You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
          $$
          int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Note that $text{div}F=0$ on $Omega_epsilon$ and hence
          $$
          int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
          $$
          int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
          $$






          share|cite|improve this answer









          $endgroup$



          You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
          $$
          int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Note that $text{div}F=0$ on $Omega_epsilon$ and hence
          $$
          int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
          $$
          Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
          $$
          int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
          $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 12 at 14:25









          SongSong

          12.4k630




          12.4k630












          • $begingroup$
            Thank you for your great and clear answer.
            $endgroup$
            – NotAbelianGroup
            Jan 12 at 14:58






          • 1




            $begingroup$
            I hope this will help :)
            $endgroup$
            – Song
            Jan 12 at 15:16










          • $begingroup$
            I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
            $endgroup$
            – NotAbelianGroup
            Jan 14 at 17:05


















          • $begingroup$
            Thank you for your great and clear answer.
            $endgroup$
            – NotAbelianGroup
            Jan 12 at 14:58






          • 1




            $begingroup$
            I hope this will help :)
            $endgroup$
            – Song
            Jan 12 at 15:16










          • $begingroup$
            I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
            $endgroup$
            – NotAbelianGroup
            Jan 14 at 17:05
















          $begingroup$
          Thank you for your great and clear answer.
          $endgroup$
          – NotAbelianGroup
          Jan 12 at 14:58




          $begingroup$
          Thank you for your great and clear answer.
          $endgroup$
          – NotAbelianGroup
          Jan 12 at 14:58




          1




          1




          $begingroup$
          I hope this will help :)
          $endgroup$
          – Song
          Jan 12 at 15:16




          $begingroup$
          I hope this will help :)
          $endgroup$
          – Song
          Jan 12 at 15:16












          $begingroup$
          I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
          $endgroup$
          – NotAbelianGroup
          Jan 14 at 17:05




          $begingroup$
          I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
          $endgroup$
          – NotAbelianGroup
          Jan 14 at 17:05


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070937%2flet-f-x-frac-x-x-3-if-0-in-omega-show-iint%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith