Let $F ( x ) = frac { x } { | x | ^ { 3 } }$, if $0 in Omega$ show $iint _ { partial Omega } ( F cdot nu ) d...
$begingroup$
Problem: Let $Omega subset mathbb { R } ^ { 3 }$ a regular domain and $nu$ the unit external vector of $partial Omega$. Let $F ( x ) = frac { x } { | x | ^ { 3 } }$.
Prove that if $0 in Omega$, then $iint _ { partial Omega } ( F cdot nu ) d s = 4 pi$.
I tried to apply the divergence theorem, $$iiint _ { Omega } operatorname { div } F mathrm { d } x _ { 1 } mathrm { d } x _ { 2 } mathrm { d } x _ { 3 } = iint _ { partial Omega } ( F cdot nu ) mathrm { d } s$$
But without getting interesting results since I have so few informations about $Omega$.
calculus multivariable-calculus vector-analysis
$endgroup$
add a comment |
$begingroup$
Problem: Let $Omega subset mathbb { R } ^ { 3 }$ a regular domain and $nu$ the unit external vector of $partial Omega$. Let $F ( x ) = frac { x } { | x | ^ { 3 } }$.
Prove that if $0 in Omega$, then $iint _ { partial Omega } ( F cdot nu ) d s = 4 pi$.
I tried to apply the divergence theorem, $$iiint _ { Omega } operatorname { div } F mathrm { d } x _ { 1 } mathrm { d } x _ { 2 } mathrm { d } x _ { 3 } = iint _ { partial Omega } ( F cdot nu ) mathrm { d } s$$
But without getting interesting results since I have so few informations about $Omega$.
calculus multivariable-calculus vector-analysis
$endgroup$
add a comment |
$begingroup$
Problem: Let $Omega subset mathbb { R } ^ { 3 }$ a regular domain and $nu$ the unit external vector of $partial Omega$. Let $F ( x ) = frac { x } { | x | ^ { 3 } }$.
Prove that if $0 in Omega$, then $iint _ { partial Omega } ( F cdot nu ) d s = 4 pi$.
I tried to apply the divergence theorem, $$iiint _ { Omega } operatorname { div } F mathrm { d } x _ { 1 } mathrm { d } x _ { 2 } mathrm { d } x _ { 3 } = iint _ { partial Omega } ( F cdot nu ) mathrm { d } s$$
But without getting interesting results since I have so few informations about $Omega$.
calculus multivariable-calculus vector-analysis
$endgroup$
Problem: Let $Omega subset mathbb { R } ^ { 3 }$ a regular domain and $nu$ the unit external vector of $partial Omega$. Let $F ( x ) = frac { x } { | x | ^ { 3 } }$.
Prove that if $0 in Omega$, then $iint _ { partial Omega } ( F cdot nu ) d s = 4 pi$.
I tried to apply the divergence theorem, $$iiint _ { Omega } operatorname { div } F mathrm { d } x _ { 1 } mathrm { d } x _ { 2 } mathrm { d } x _ { 3 } = iint _ { partial Omega } ( F cdot nu ) mathrm { d } s$$
But without getting interesting results since I have so few informations about $Omega$.
calculus multivariable-calculus vector-analysis
calculus multivariable-calculus vector-analysis
asked Jan 12 at 14:10
NotAbelianGroupNotAbelianGroup
15511
15511
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
$$
int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
$$ Note that $text{div}F=0$ on $Omega_epsilon$ and hence
$$
int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
$$ Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
$$
int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
$$
$endgroup$
$begingroup$
Thank you for your great and clear answer.
$endgroup$
– NotAbelianGroup
Jan 12 at 14:58
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Jan 12 at 15:16
$begingroup$
I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
$endgroup$
– NotAbelianGroup
Jan 14 at 17:05
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070937%2flet-f-x-frac-x-x-3-if-0-in-omega-show-iint%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
$$
int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
$$ Note that $text{div}F=0$ on $Omega_epsilon$ and hence
$$
int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
$$ Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
$$
int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
$$
$endgroup$
$begingroup$
Thank you for your great and clear answer.
$endgroup$
– NotAbelianGroup
Jan 12 at 14:58
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Jan 12 at 15:16
$begingroup$
I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
$endgroup$
– NotAbelianGroup
Jan 14 at 17:05
add a comment |
$begingroup$
You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
$$
int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
$$ Note that $text{div}F=0$ on $Omega_epsilon$ and hence
$$
int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
$$ Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
$$
int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
$$
$endgroup$
$begingroup$
Thank you for your great and clear answer.
$endgroup$
– NotAbelianGroup
Jan 12 at 14:58
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Jan 12 at 15:16
$begingroup$
I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
$endgroup$
– NotAbelianGroup
Jan 14 at 17:05
add a comment |
$begingroup$
You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
$$
int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
$$ Note that $text{div}F=0$ on $Omega_epsilon$ and hence
$$
int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
$$ Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
$$
int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
$$
$endgroup$
You cannot apply divergence theorem directly to the domain $Omega$ since $F$ is not $C^1$ on the whole domain $Omega$ due to $0inOmega$. Instead, let $B_epsilon ={xinmathbb{R}^n;|;|x|<epsilon}$. Pick sufficiently small $epsilon>0$ such that $B_{2epsilon}subset Omega$ and let $Omega_epsilon = Omega setminus B_epsilon$. Then, $partialOmega_epsilon= partial Omega -partial B_epsilon$ and it holds
$$
int_{Omega_epsilon}text{div}F;dxdy=int_{partialOmega_epsilon}Fcdotnu ;dS =int_{partialOmega}Fcdotnu ;dS-int_{partial B_epsilon}Fcdotnu ;dS.
$$ Note that $text{div}F=0$ on $Omega_epsilon$ and hence
$$
int_{partialOmega}Fcdotnu ;dS=int_{partial B_epsilon}Fcdotnu ;dS.
$$ Now, since outward unit normal vector $nu(x)$ on $partial B_epsilon$ is $frac{x}{epsilon}$, we get
$$
int_{partial B_epsilon}Fcdotnu ;dS=int_{partial B_epsilon}frac{x}{r^3}cdotfrac{x}{epsilon} ;dS=frac{1}{epsilon^2}text{vol}(partial B_epsilon)=4pi.
$$
answered Jan 12 at 14:25
SongSong
12.4k630
12.4k630
$begingroup$
Thank you for your great and clear answer.
$endgroup$
– NotAbelianGroup
Jan 12 at 14:58
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Jan 12 at 15:16
$begingroup$
I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
$endgroup$
– NotAbelianGroup
Jan 14 at 17:05
add a comment |
$begingroup$
Thank you for your great and clear answer.
$endgroup$
– NotAbelianGroup
Jan 12 at 14:58
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Jan 12 at 15:16
$begingroup$
I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
$endgroup$
– NotAbelianGroup
Jan 14 at 17:05
$begingroup$
Thank you for your great and clear answer.
$endgroup$
– NotAbelianGroup
Jan 12 at 14:58
$begingroup$
Thank you for your great and clear answer.
$endgroup$
– NotAbelianGroup
Jan 12 at 14:58
1
1
$begingroup$
I hope this will help :)
$endgroup$
– Song
Jan 12 at 15:16
$begingroup$
I hope this will help :)
$endgroup$
– Song
Jan 12 at 15:16
$begingroup$
I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
$endgroup$
– NotAbelianGroup
Jan 14 at 17:05
$begingroup$
I had my final exam this morning and one of the problems was pretty much the same. Thank you again!
$endgroup$
– NotAbelianGroup
Jan 14 at 17:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070937%2flet-f-x-frac-x-x-3-if-0-in-omega-show-iint%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
